Research
Fill the Void II: An Investigation into Methods of Reducing Voiding
Final Finish Specifications Review
DFX on High Density Assemblies
Challenges on ENEPIG Finished PCBs
Testing PCBs for Creep Corrosion
Screening of Lower Melting Point Pb-Free Alloys
Hand Printing using Nanocoated and other High End Stencil Materials
Board Processes and Effects on Fine Copper Barrel Cracks
MORE RESEARCH
Latest Industry News
Foxconn Says China Can No Longer Be 'The World's Factory'
Microsoft's new phone is ... $1,400? Why?
Hon Hai says Q2 results satisfactory
China Launches Beidou, Its Own Version of GPS
Do Engineers Live Longer? A Look at Occupational Factors' Effect on Longevity
The iPhone is still breaking sales records during the pandemic
How to Work from Home Successfully
Smartphone shipments in China plunge 35% in July
MORE INDUSTRY NEWS

Vapor Degreasing Chemistries Remove Lead-Free and No-Clean Fluxes



Vapor Degreasing Chemistries Remove Lead-Free and No-Clean Fluxes
The purpose of this paper is to present a cleaning process for difficult no-clean, lead-free and high temperature flux residues on reflowed PCBs.
Production Floor

DOWNLOAD

Authored By:


Venesia Hurtubise, Elizabeth Norwood, Wells Cunningham, Laura LaPlante
MicroCare Corporation
New Britain, CT, USA

Summary


Advancements in the electronics industry are continuously leading to more sophisticated, more intricate and more miniaturized circuitry. In conjunction with increasing regulations on electronics manufacturing, many changes have been made to the electronics world, and thus the circuit board manufacturing process. Lead-free, no-clean and halide-free flux formulations have introduced new cleaning obstacles, especially on ever-shrinking component sizes. In order to maintain high cleanliness standards for modern circuitry, new sophisticated cleaning chemistries are required.

The purpose of this paper is to present a cleaning process for difficult no-clean, lead-free and high temperature flux
residues on reflowed PCBs. The proposed cleaning solvents are drop-in replacements for outdated solvent technology, or
alternatives for elaborate aqueous systems. These cleaning technologies are used in traditional vapor degreaser systems, which allow for fast cleaning times and spot-free results without the need for additional rinsing or drying equipment. The improved formulas have low surface tensions (less than 20 dynes/cm), which allow access to low stand-off components and high solvency to combat the most difficult flux formulations and white residues. Visual and quantitative data are presented to assess the overall cleaning efficiency of the solvent system. Cost analysis is investigated to assess the efficacy of solvent vapor cleaning for PCB industry.cleaning

Conclusions


New flux and solder formulations with better safety profiles and processing efficiency hold an importance in modern electronics assembly; however, these benefits come with hurdles of their own, including potentially detrimental residues. Processes that require high-reliability electronics require high-reliability cleaning. Modern vapor degreasing techniques and solvent formulations are environmentally conscientious, time efficient, safe and effective on some of today's most difficult soils. Although ionic residues may be an issue for current vapor degreasing solvents, there are new technologies available to combat even the toughest flux residues. Solvents A and B showed major visual improvements over the Classic Solvent when cleaning noclean and lead-free flux residues. The advanced solvents were able to remove at least 50% of the flux residue from all of the different flux formulations during the cleaning cycle. Increasing cleaning cycle times or utilizing ultrasonic agitation may be able to further improve the visual results. The SIR evaluation confirmed that the cleaning formulations did not impact the circuit operation and that any remaining residue was not detrimental to the circuit performance.

Initially Published in the SMTA Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Cleaning Reballed BGA Components
We Bake, But Still Have Delamination, Why?
Reflow For Rigid Flex
Solder Paste Volume for BGA Rework
Problems With Starved "J" Lead Joints
Delay Before Cleaning Partial Assemblies
Can a CTE Mismatch Cause Reliability Problems?
Solder Paste Transfer Efficiency - What/Why
MORE BOARD TALK
Ask the Experts
Soldering Components with Silver Pads
Environment Impact on Assembly, Printing and Reflow
Solder Balling Prediction Formula
Old Components and Blow Holes
Estimating Failure Rate During Rework
Coating to stop tin whisker growth?
Cleaning an assembled board with IPA
Remove and replace a 240 pin connector
MORE ASK THE EXPERTS