Electronics Assembly Knowledge, Vision & Wisdom
Jetting Conductive Adhesives with Silver Coated Polymer Particles
Jetting Conductive Adhesives with Silver Coated Polymer Particles
Tests performed in this study demonstrate that a conductive adhesive using spherical, polymer silver particles can be used for no-contact jet printing.
Production Floor

Authored By:
Gustaf Mortensson
Chalmers University of Technology, Goteborg, Sweden

Kalland, Erik, Redford, Keith
Mosaic Solutions AS, Skjetten, Norway

Oppland, Ottar
FFI, Kjeller, Norway
,{url:'http://www.circuitinsight.com/videos/programs_final.mp4'}], clip:{autoBuffering:true, autoPlay:true, scaling:'scale' } }).ipad();
Summary
The development of novel interconnection materials for production of electronics is of considerable interest to fulfill increasing demands on interconnect reliability in increasingly demanding environments with respect to temperature extremes, mechanical stresses and/or production limitations. Adhesives are playing an increasingly significant role in the continuously evolving electronics industry.

Electrically conductive adhesives have developed to the stage that they offer a viable alternative to traditional solders for applications that demand high reliability in structurally challenging environments. Conductive adhesives are often divided into groups based on conductive directions; Isotropic Conductive Adhesives (ICA) normally provide almost equal electrical properties in all spatial directions, and Anisotropic Conductive Adhesives (ACA) which are insulating in an unstressed state, but provide directional electrical conduction through connections between filler particles and the local connection points.

Both ICA and ACA have traditionally demanded a high filler content to ensure adequate electrical connectivity. Epoxy based adhesives are often selected due to the vast selection of combinations availability, and traditionally silver fillers are used for obtaining electrical conductivity in ICA. Silver is advantageous since even its oxide maintains high conductivity. Unfortunately, the high cost of silver prevents many applications from using it. An ICA was developed at a much lower cost where solid silver is replaced with metal coated polymer spheres. The polymer spheres are essentially mono disperse in size and can be specifically chosen for different applications. The silver coating of the spheres is approximately 100 nm thick.

Specific applications will be presented that highlight the feasibility of the technology with respect to conductivity, structural reliability and lifetime standards. The deposition of the novel ICA has been performed using a jet printing technology to ensure both precise and accurate positioning, size and volume delivery.
Conclusions
From the tests that were performed in this study, it has been demonstrated that a conductive adhesive utilising spherical, polymer silver particles can be used for no-contact jet printing. The electrical properties of such an adhesive can be controlled by changing the particle size, suspension concentration and/or silver thickness. The electrical resistivity measured in this study is low enough to ensure no measurable resistive losses on the test PCBs. Further work is needed for optimising the properties of the adhesive matrix to improve reliability and deposition quality and reliability.
Initially Published in the IPC Proceedings
Submit A Comment

Comments are reviewed prior to posting. Please avoid discussion of pricing or recommendations for specific products. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Company


E-mail


Country


Comments


Authentication

Please type the number displayed into the box. If you attempt to submit information and receive an error, you may need to refresh the page and insert the information again.



Related Programs
bullet Taking the LED Pick and Place Challenge
bullet Trends for Printing Ultra Miniature Chips
bullet Solder Paste Transfer Greater Than 100%
bullet Double Print Stencils Systems
bullet Printing and Assembly Challenges for QFN Devices
bullet Assembly of POP with Novel Epoxy Flux on Solder Paste
bullet Profiled Squeegee Blade Review
bullet Big Ideas on Miniaturization
bullet How Many Fiducials Per Stencil
bullet Enclosed Media Printing as an Alternative to Metal Blades
More Related Programs
About | Advertising | Contact | Directory | Directory Search | Directory Submit | Privacy | Programs | Program Search | Sponsorship | Subscribe | Terms

Circuit Insight
6 Liberty Square #2040, Boston MA 02109 USA

Jeff Ferry, Publisher | Ken Cavallaro, Editor/Business Manager

Copyright © Circuitnet LLC. All rights reserved.
A Circuitnet Media Publication