Embedded Components from Concept-To-Manufacturing
Copper Foil Elements Affecting Transmission Loss with High Speed Circuits
pH neutral Cleaning Agents - Market Expectation & Field Performance
Reducing Dust Deposition on Electronic Equipment
New Requirements for Sir Measurement
Effects of Mixing Solder Sphere Alloys with Bismuth-Based Pastes
The Development of a 0.3 mm Pitch CSP Assembly Process
Generalizations About Component Flatness at Elevated Temperature
Latest Industry News
iPhone 12 Production Could Be Delayed
Acer sees PC component shortages
Bio-Ink for 3-D Printing Inside the Body
Covid Seen Driving the Security Sector
U.S. Eases Restrictions on Private Remote-Sensing Satellites
EMS Manufacturing quote complexity drives OEMs to look behind EMS curtain
U.S. Manufacturing Rebounds to 14-Month High
IBM's New AI Tool Parses A Tidal Wave of Coronavirus Research

Fill the Void

Fill the Void
Several methods of minimizing voids are presented. Printing solder paste with gas escape routes is an excellent way to reduce voiding.
Materials Tech


Authored By:

Tony Lentz, Greg Smith
FCT Assembly
Greeley, CO, USA


Voids in solder joints are a concern for many electronic manufacturers. They create weakness in the solder joints which can lead to mechanical failure. Voids can slow or limit heat transfer away from the component which can lead to thermal failure. Voids can also interfere with electrical signal flow creating problems with the function of the circuit board. Minimization of voiding is beneficial for the life and function of the circuit assembly.

Voids are caused by many things. Via holes in pads can cause solder paste to flow away from the solder joint creating voids. Gases from via holes can move upwards into the solder joint creating voids. Incomplete wetting or flow of the solder paste can create gaps or voids in the solder joint. Gasses from solder paste fluxes can be trapped in the solder joint. Regardless of the cause of voids there are ways to minimize voiding.

Several methods of minimizing voids are presented in this paper. Stencil design can have a dramatic impact on voiding. Printing solder paste with gas escape routes is an excellent way to reduce voiding. When via in pad designs are used, voiding can be minimized by printing solder paste with a clearance around the via holes. Changes to the reflow profile can help reduce voiding, but the changes need to fit the solder paste. Adding a soak to the reflow profile can drive off volatile materials from certain solder pastes. Lengthening the time above liquidus helps volatile materials to escape from other solder pastes. The solder paste flux has a large influence on voiding. Some solder pastes have a lower potential for voiding than others. A test matrix was designed to validate these methods of minimizing voiding. Void measurements were taken, the data was summarized and a set of recommendations were made. This was all done in an effort to help the reader to "Fill the Void."


Voiding in solder joints is affected by many factors. As shown in this study, voiding is influenced by the solder paste flux chemistry, the stencil design and the reflow profile used. In this work, there was a clear difference in voiding from one solder paste to the other. The stencil design had a small effect on voiding, although the 5-dot pattern design showed higher voiding than window pane or diagonal stripe patterns. The reflow profiles tested had different effects on voiding for each of the solder pastes. The ramp to spike profile gave lower voiding with solder paste B, while the long time above liquidus - high peak profile gave lower voiding with solder paste A. This shows that the reflow profile must be paired with the solder paste and the stencil design in order to minimize voiding.

Only a small number of factors that influence voiding were studied in this work. There is much more testing to be done. Due to the commonplace use of bottom terminated components, it is clear that voiding will be an issue that many must address. The authors will continue to study factors that influence voiding in an effort to help the reader to "Fill the Void".

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Solder Paste Beyond The Shelf Life?
Issues With Fillets on Via Holes?
Can Tape Residue Contaminate a Clean Tank?
Suggested Stencil Wipe Frequency?
Reflow Oven Zone Separation Challenges
When To Use Adhesive To Bond SMT Components
How To Clean a Vintage Circuit Board Assembly?
PCBA Inspection Concerns
Ask the Experts
Lifted Lead on SOT Component
Allowable Bow and Twist on Round PC Fab
Mixed MSL Baking
Step Stencil Squeegee Angle
Solder Balling Splash After Reflow
Application Using No-Clean and Water Soluble Fluxes
IPC SOIC Defect Question
Mixed Process Solder Joint Appearance, Smooth or Grainy?