Embedded Components from Concept-To-Manufacturing
Copper Foil Elements Affecting Transmission Loss with High Speed Circuits
pH neutral Cleaning Agents - Market Expectation & Field Performance
Reducing Dust Deposition on Electronic Equipment
New Requirements for Sir Measurement
Effects of Mixing Solder Sphere Alloys with Bismuth-Based Pastes
The Development of a 0.3 mm Pitch CSP Assembly Process
Generalizations About Component Flatness at Elevated Temperature
Latest Industry News
iPhone 12 Production Could Be Delayed
Acer sees PC component shortages
Bio-Ink for 3-D Printing Inside the Body
Covid Seen Driving the Security Sector
U.S. Eases Restrictions on Private Remote-Sensing Satellites
EMS Manufacturing quote complexity drives OEMs to look behind EMS curtain
U.S. Manufacturing Rebounds to 14-Month High
IBM's New AI Tool Parses A Tidal Wave of Coronavirus Research

NASA DOD Phase 2: Copper Dissolution Testing

NASA DOD Phase 2: Copper Dissolution Testing
This paper describes copper dissolution measurements of two lead-free solder alloys to better define allowable rework process windows.
Analysis Lab


Authored By:

Jeff Kennedy
Minneapolis MN USA

Dave Hillman and Ross Wilcoxon
Rockwell Collins
Cedar Rapids IA USA


Copper dissolution is a concern for products making the conversion to lead-free solder alloys. In these alloys, the more rapid reaction of tin/copper in lead-free solder alloys compared to tin-lead solder alloys, can accelerate the degradation of the plated copper connections. No copper dissolution testing was conducted during Phase 1 of the JCAA/JGPP program testing, which focused on the reliability of solder joints.

The Phase 2 effort included testing to validate copper dissolution measurements reported by the commercial electronics industry. Copper dissolution is of particular concern when components are reworked, which is much more commonly used on highreliability electronics than in consumer electronics. Reworking product that has lead-free solder joints may impact the repair depot operations as the copper dissolution may remove over half of the Plated Through Hole (PTH) copper in a single rework cycle.

This paper describes copper dissolution measurements of two lead-free solder alloys, for both plated through holes and surface mount pads, to better define allowable rework process windows. These results showed that due to the higher copper dissolution rates, lead-free assembles may require design changes such as PTH copper thickness to ensure that they can be reworked.


A number of issues related to copper dissolution should be addressed for products making the transition to lead-free assembly. These include:
  • The amount of initial copper plated in the PTH hole may need to be increased to establish a greater margin of safety. The current requirement for 1 mil copper plating minimum may need to be increased to as high as 2.0 mils to provide this margin.
  • A resultant minimum copper thickness after rework process may need to be specified and validation methods to ensure compliance would need to be established.
  • Alloy selection for rework may be different than for primary attach depending on the expected number of rework cycle requirements for the given product lifetime. Some initial studies have indicated that mixing various Pb-free alloys will not degrade solder joint quality or solder joint reliability.
  • Copper dissolution rates vary somewhat with the PTH diameter. This study included only two hole sizes: 0.036" and 0.015". The smaller hole may inhibit material flow up and down the PTH barrel, which affects the copper dissolution rate. Product design consideration may require some additional testing to validate product parameters and associated process requirements.
  • Rework locations need to be identified by reference designator.
  • Control and recording of rework exposure time may also be required to ensure the connection will meet lifetime requirements of the product.
  • Tighter controls on solder pot contaminant levels and maintenance of pot composition may be required to reduce variance of the copper dissolution effect during rework operations.
  • Consideration for larger component sizes with regard to nozzle design and alloy flow during the rework procedure may be necessary.

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Solder Paste Beyond The Shelf Life?
Issues With Fillets on Via Holes?
Can Tape Residue Contaminate a Clean Tank?
Suggested Stencil Wipe Frequency?
Reflow Oven Zone Separation Challenges
When To Use Adhesive To Bond SMT Components
How To Clean a Vintage Circuit Board Assembly?
PCBA Inspection Concerns
Ask the Experts
Lifted Lead on SOT Component
Allowable Bow and Twist on Round PC Fab
Mixed MSL Baking
Step Stencil Squeegee Angle
Solder Balling Splash After Reflow
Application Using No-Clean and Water Soluble Fluxes
IPC SOIC Defect Question
Mixed Process Solder Joint Appearance, Smooth or Grainy?