Embedded Components from Concept-To-Manufacturing
Copper Foil Elements Affecting Transmission Loss with High Speed Circuits
pH neutral Cleaning Agents - Market Expectation & Field Performance
Reducing Dust Deposition on Electronic Equipment
New Requirements for Sir Measurement
Effects of Mixing Solder Sphere Alloys with Bismuth-Based Pastes
The Development of a 0.3 mm Pitch CSP Assembly Process
Generalizations About Component Flatness at Elevated Temperature
Latest Industry News
iPhone 12 Production Could Be Delayed
Acer sees PC component shortages
Bio-Ink for 3-D Printing Inside the Body
Covid Seen Driving the Security Sector
U.S. Eases Restrictions on Private Remote-Sensing Satellites
EMS Manufacturing quote complexity drives OEMs to look behind EMS curtain
U.S. Manufacturing Rebounds to 14-Month High
IBM's New AI Tool Parses A Tidal Wave of Coronavirus Research

Advanced Printing for Microelectronic Packaging

Advanced Printing for Microelectronic Packaging
Using micro-dispensing it is possible to print in 3D space a wide variety of materials including solders, epoxies, conductive adhesives and ceramic filled polymers.
Production Floor


Authored By:

Kenneth H. Church, Xudong Chen, Joshua M. Goldfarb, Casey W. Perkowski, Samuel LeBlanc
nScrypt, Inc.
Orlando, FL USA


Using micro-dispensing with exceptional volume control it is possible to print in 3D space a wide variety of materials and including solders, epoxies, conductive adhesives and ceramic filled polymers. These can be used to build 3D structures and utilizing a 3D Printing approach which is also known as Computer Aided Design and Computer Aided Manufacturing (CAD/CAM).

The advanced technology enables 3D printing of electronics but it also enables smaller solder and adhesive dots; 75 microns and less. It is possible to place these on any package in 3D space. Demonstrations for this technology have shown that it is possible to print less than 50 micron wide lines and dots. Additionally a wide range of materials that will be required in future packaging can be dispensed.

These smaller features provide sub nanoliter volume. This is possible given the less than 100 picoliter volume control during dispensing and including highly viscous materials. Demonstrations of smaller printed dots and lines for electronic circuits and packaging will be shown. In addition, 3D circuitry that is 3D printed and contains no solder will also be shown, demonstrating the future of printed circuits.


Electronic packaging is becoming more complex given the amount of circuitry required in smaller volumes. This will require tighter tolerances in dispensing and in robotic control for placement. The micro-dispensing of dots and lines utilizing the company micro-dispenser has the ability to accurately place and control the volume of solders and epoxies.

This could be enabling for existing and future electronic products. Additionally, micro-dispensing was used to demonstrate 3D electrically functional structures. These devices perform like standard electronic boards, but do not require solder. The monolithic builds will be more rugged and as the technology matures this will also add more functions per volume since an additional dimension will be used more effectively.

Initially Published in the IPC Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Solder Paste Beyond The Shelf Life?
Issues With Fillets on Via Holes?
Can Tape Residue Contaminate a Clean Tank?
Suggested Stencil Wipe Frequency?
Reflow Oven Zone Separation Challenges
When To Use Adhesive To Bond SMT Components
How To Clean a Vintage Circuit Board Assembly?
PCBA Inspection Concerns
Ask the Experts
Lifted Lead on SOT Component
Allowable Bow and Twist on Round PC Fab
Mixed MSL Baking
Step Stencil Squeegee Angle
Solder Balling Splash After Reflow
Application Using No-Clean and Water Soluble Fluxes
IPC SOIC Defect Question
Mixed Process Solder Joint Appearance, Smooth or Grainy?