Electronics Assembly Knowledge, Vision & Wisdom
Advanced Printing for Microelectronic Packaging
Advanced Printing for Microelectronic Packaging
Using micro-dispensing it is possible to print in 3D space a wide variety of materials including solders, epoxies, conductive adhesives and ceramic filled polymers.
Production Floor

Authored By:
Kenneth H. Church, Xudong Chen, Joshua M. Goldfarb, Casey W. Perkowski, Samuel LeBlanc
nScrypt, Inc.
Orlando, FL USA
,{url:'http://www.circuitinsight.com/videos/programs_final.mp4'}], clip:{autoBuffering:true, autoPlay:true, scaling:'scale' } }).ipad();
Using micro-dispensing with exceptional volume control it is possible to print in 3D space a wide variety of materials and including solders, epoxies, conductive adhesives and ceramic filled polymers. These can be used to build 3D structures and utilizing a 3D Printing approach which is also known as Computer Aided Design and Computer Aided Manufacturing (CAD/CAM).

The advanced technology enables 3D printing of electronics but it also enables smaller solder and adhesive dots; 75 microns and less. It is possible to place these on any package in 3D space. Demonstrations for this technology have shown that it is possible to print less than 50 micron wide lines and dots. Additionally a wide range of materials that will be required in future packaging can be dispensed.

These smaller features provide sub nanoliter volume. This is possible given the less than 100 picoliter volume control during dispensing and including highly viscous materials. Demonstrations of smaller printed dots and lines for electronic circuits and packaging will be shown. In addition, 3D circuitry that is 3D printed and contains no solder will also be shown, demonstrating the future of printed circuits.
Electronic packaging is becoming more complex given the amount of circuitry required in smaller volumes. This will require tighter tolerances in dispensing and in robotic control for placement. The micro-dispensing of dots and lines utilizing the company micro-dispenser has the ability to accurately place and control the volume of solders and epoxies.

This could be enabling for existing and future electronic products. Additionally, micro-dispensing was used to demonstrate 3D electrically functional structures. These devices perform like standard electronic boards, but do not require solder. The monolithic builds will be more rugged and as the technology matures this will also add more functions per volume since an additional dimension will be used more effectively.
Initially Published in the IPC Proceedings
Submit A Comment

Comments are reviewed prior to posting. Please avoid discussion of pricing or recommendations for specific products. You must include your full name to have your comments posted. We will not post your email address.

Your Name






Please type the number displayed into the box. If you receive an error, you may need to refresh the page and resubmit the information.

Related Programs
bullet Double Print Stencils Systems
bullet Material Selection and Optimization for TMV PoP
bullet Bottom Side Chip Bonding
bullet Assembling Boards with BGAs on Both Sides
bullet Manual or Automated Assembly?
bullet Assembly of POP with Novel Epoxy Flux on Solder Paste
bullet Enclosed Media Printing as an Alternative to Metal Blades
bullet Big Ideas on Miniaturization
bullet Printing and Assembly Challenges for QFN Devices
bullet Profiled Squeegee Blade Review
More Related Programs