Research
Innovative Panel Plating for Heterogeneous Integration
A Method to Investigate PCB Supplier Rework Processes and Best Practices
The Effects of PCB Fabrication on High-Frequency Electrical Performance
Aerosol Jet Printing of Conductive Epoxy for 3D
EOS Exposure of Components in the Soldering Process
High Thermo-Mechanical Fatigue and Drop Shock Resistant Alloys
Filling of Microvias and Through Holes by Electrolytic Copper Plating
NASA DOD Phase 2: Copper Dissolution Testing
MORE RESEARCH
Latest Industry News
How Telecom is Rolling Out 5G During a Pandemic
Can Software Performance Engineering Save Us From the End of Moore's Law?
Tech stocks have been a winning bet, but investors worry it will fade
All This Chaos Might Be Giving You 'Crisis Fatigue'
Notebook PCB makers to see tight capacity through 3Q20
How Effective Is Nano Coating On Stencils?
U.S. Critical Infrastructure Full of Security Holes
Auto Interior Is the New Exterior
MORE INDUSTRY NEWS

Tin Whisker Testing and Modeling



Tin Whisker Testing and Modeling
The elimination of lead from consumer electronics has resulted in an increase in tin whisker risk mitigation using dual-use commercial/aerospace components.
Analysis Lab

DOWNLOAD

Authored By:


Stephan Meschter
BAE Systems, Endicott, N.Y.

Polina Snugovsky, Jeff Kennedy, Zohreh Bagheri, and Eva Kosiba
Celestica Inc., Toronto, ON, Canada

Summary


Driven by European Union directives, most commercial electronics manufacturers began delivering lead-free electronic components, assemblies, and equipment in 2006. As a result of a global movement away from using lead (Pb), component manufacturers are increasingly applying tin-rich finishes to the leads of their devices and soldering with lead(Pb)-free solders.

Unfortunately, this can create a risk of tin whisker formation that can result in electrical failures. Motivated by its unique requirements such as long service lifetimes, rugged operating environments, and high consequences of failure, the aerospace and defense industries must mitigate the detrimental effects of tin whisker formation when lead-free materials are used.

The present paper provides a status on the effort associated with a multi-year testing and modeling program that aims to assess and quantify tin whisker growth on lead-free manufactured assemblies. The tin whisker growth of tin finished parts soldered with SAC305 (Sn-3.0Ag-0.5Cu) solder alloy under high temperature/high humidity (85 degrees C/ 85 percent relative humidity) conditions were evaluated.

Significant whisker growth was observed from the SAC305 solder alloy, particularly in the fillet regions where it was less than 25 microns thick. Details of the sample inspection and whisker growth results are provided.

Initially Published in the SMTA Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
How Effective Is Nano Coating On Stencils?
What Causes Board Delamination?
01005 Component Challenges and Bugs
Sticky Residue Under Low Clearance Parts
Soldering Relays Intrusively in Lead Free Process
Printing vs. Dispensing
Maximum Board Temperature During Tin-Lead
Is There a Spacing Spec for SMD Components?
MORE BOARD TALK
Ask the Experts
Recommended Fiducial Shape
HASL vs. Immersion Gold
Very Low Temp PCBs
Looking for Long-term Component Storage Options
Baking After Cleaning Hand Placed Parts
Conformal Coating Recommendation
Burned Chip Repair
BGA Component Grounding Problem
MORE ASK THE EXPERTS