Fill the Void II: An Investigation into Methods of Reducing Voiding
Final Finish Specifications Review
DFX on High Density Assemblies
Challenges on ENEPIG Finished PCBs
Testing PCBs for Creep Corrosion
Screening of Lower Melting Point Pb-Free Alloys
Hand Printing using Nanocoated and other High End Stencil Materials
Board Processes and Effects on Fine Copper Barrel Cracks
Latest Industry News
Foxconn Says China Can No Longer Be 'The World's Factory'
Microsoft's new phone is ... $1,400? Why?
Hon Hai says Q2 results satisfactory
China Launches Beidou, Its Own Version of GPS
Do Engineers Live Longer? A Look at Occupational Factors' Effect on Longevity
The iPhone is still breaking sales records during the pandemic
How to Work from Home Successfully
Smartphone shipments in China plunge 35% in July

Solder Paste: Fundamental Material Property / SMT Performance Correlation

Solder Paste: Fundamental Material Property / SMT Performance Correlation
Aggressive form factors, reducing pitch, thinner packages, and larger die to package ratios are leading to higher package warpage during SMT reflow.
Materials Tech


Authored By:

Nilesh Badwe, Shunfeng Cheng, Srinivasa Aravamudhan, Mukul Renavikar
Intel Corporation
Hillsboro, OR, USA


Aggressive form factors, reducing pitch, thinner packages, and larger die to package ratios are leading to higher package warpage during SMT reflow. It is getting more challenging to mitigate warpage driven SMT defects viz. non-wet open (NWO), head-on-pillow (HoP) and solder bridging (SB). We studied multiple paste formulations using SMT hammer tests. Lab level characterizations were also used to establish a correlation between SMT performance and fundamental properties ofsolder pastes. We found that NWO and HoP compete with each other while having a correlation with flux activity to clean OSP on the Cu surface. SB risk showed a correlation with high temperature viscosity, indicating a rheology driven defect. Printability performance also showed a good correlation with the thixotropic index. These learnings will be extremely useful to develop next generation solder pastes to mitigate warpage driven defects.


Package warpage-driven solder joint defects can be mitigated through solder paste material design. Solder paste ability to clean surface OSP was found to affect NWO and HoP resistance of the paste. If the solder paste activity triggers early to clean the CuOSP surface, it minimizes the NWO risk through early intermetallic compound formation on the pad surface. However, this reduces activity of the paste for further solder oxide cleaning leading to a higher risk for HoP. This aspect of the solder paste needs to be optimized to reduce both HoP and NWO defects to an acceptable level. Liu et al. proposed two different methods viz. “tiny dot paste” and “ball onto paste” to assess HoP resistance of a paste. Scalzo proposed a graping test to study heat resistance of the paste. We believe that additional tests can be used to assess the HoP / NWO risk of solder pastes. Drop in tackiness as predicted by Amir et al. [1] did not show as strong a correlation with NWO performance of the pastes as the CuOSP solder spread. Bridging defect rate for multiple pastes was observed to correlate well with high temperature viscosity. Once the viscosity drops, the flux from the paste can easily flow causing wet bridging. This eventually provides a path for molten solder to migrate from one PCB pad to its adjacent pad during reflow, thereby increasing SB risk. A high thixotropic index was observed to predict good print performance of solder pastes.

Overall, there was no correlation observed between the halogen content classification of the solder pastes and their risk of forming either NWO or HoP defects. This indicates that rosins, acids and amines in the paste have higher impact on the activity than halogen content.

The learnings from this study will be used for next generation solder paste l development at different paste suppliers. These can also be used at board assembly manufacturers (OEMs / ODMs) to assess risk level for different pastes for different defect types and as a quality check for different lots of a material.

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Cleaning Reballed BGA Components
We Bake, But Still Have Delamination, Why?
Reflow For Rigid Flex
Solder Paste Volume for BGA Rework
Problems With Starved "J" Lead Joints
Delay Before Cleaning Partial Assemblies
Can a CTE Mismatch Cause Reliability Problems?
Solder Paste Transfer Efficiency - What/Why
Ask the Experts
Soldering Components with Silver Pads
Environment Impact on Assembly, Printing and Reflow
Solder Balling Prediction Formula
Old Components and Blow Holes
Estimating Failure Rate During Rework
Coating to stop tin whisker growth?
Cleaning an assembled board with IPA
Remove and replace a 240 pin connector