Research
Fill the Void II: An Investigation into Methods of Reducing Voiding
Wettable-Flanks On Bottom-Termination Components in Mass Production
Improved Flux Reliability of Lead-Free Solder Alloy Solder Paste
Investigation into Lead-Free Low Silver Solder Wire for Electronics
Effects of Composition and Isothermal Aging on Microstructure Performance
How Does Printed Solder Paste Volume Affect Solder Joint Reliability?
Wearable Electronics & Big Data = High Volume, High Mix SMT
Evaluation of Molded Flip-chip BGA Packages
MORE RESEARCH
Latest Industry News
MIT Turns 'Magic' Material Into Versatile Electronic Devices
U.S. Commerce Dept. presses Taiwan for more chips to automakers
Ford is betting that solid-state batteries will cut EV costs
How to Be a Role Model of Resilience
IoT and the circular economy
Embedded Vision at the Tipping Point
Dell lays out its plans for the future
Ford And Volkswagen Have Major Breakthrough On Self-Driving Cars
MORE INDUSTRY NEWS

Tin Whisker Testing and Modeling



Tin Whisker Testing and Modeling
The elimination of lead from consumer electronics has resulted in an increase in tin whisker risk mitigation using dual-use commercial/aerospace components.
Analysis Lab

DOWNLOAD

Authored By:


Stephan Meschter
BAE Systems, Endicott, N.Y.

Polina Snugovsky, Jeff Kennedy, Zohreh Bagheri, and Eva Kosiba
Celestica Inc., Toronto, ON, Canada

Summary


Driven by European Union directives, most commercial electronics manufacturers began delivering lead-free electronic components, assemblies, and equipment in 2006. As a result of a global movement away from using lead (Pb), component manufacturers are increasingly applying tin-rich finishes to the leads of their devices and soldering with lead(Pb)-free solders.

Unfortunately, this can create a risk of tin whisker formation that can result in electrical failures. Motivated by its unique requirements such as long service lifetimes, rugged operating environments, and high consequences of failure, the aerospace and defense industries must mitigate the detrimental effects of tin whisker formation when lead-free materials are used.

The present paper provides a status on the effort associated with a multi-year testing and modeling program that aims to assess and quantify tin whisker growth on lead-free manufactured assemblies. The tin whisker growth of tin finished parts soldered with SAC305 (Sn-3.0Ag-0.5Cu) solder alloy under high temperature/high humidity (85 degrees C/ 85 percent relative humidity) conditions were evaluated.

Significant whisker growth was observed from the SAC305 solder alloy, particularly in the fillet regions where it was less than 25 microns thick. Details of the sample inspection and whisker growth results are provided.

Initially Published in the SMTA Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Cure for the Grape Effect
Removing Warpage from PCBAs
Solder Paste Inspection - When and Why
Predicting Mid-Chip Solder Balling
Will Typical No Clean Paste Pass an SIR Test?
How Do You Remove Oxidation from PCBs?
Consensus for Baking Prior to Rework?
How Many Fiducials Per Stencil
MORE BOARD TALK
Ask the Experts
Question About Dry Storage of PCBA's
Baking Concerns for Stacked Trays of Components
Two Year Component Date Code Mandate
Assembly Question for Soldering USB Connectors
Tough Hand Soldering Problem
Challenges with 01005 Components
What Is Causing Connectors to Bow?
Acceptability Standard for Plated Hole Barrel Fill
MORE ASK THE EXPERTS