Research
Early Design Review of Boundary Scan To Enhancing Testability
Fatigue and Shear Properties of High Reliable Solder Joints
Liquid Dispensed Thermal Materials for High Volume Manufacturing
Effect of Process Changes and Flux on Mid-Chip Solder Balling
Effect of Fine Lead-Free Solder Powder on the Reflow Property Pastes
Embedded Fibers Enhance Nano-Scale Interconnections
Electronic Packages and Modules Based on Embedded Die Technologies
3D Printed Electronics for Printed Circuit Structures
MORE RESEARCH
Latest Industry News
Foxconn to Shift Some Apple Production to Vietnam
GM Opens Up a New Front in Its Battle With Tesla: Batteries
Chinese handset vendors keenly building up inventory
Apple suppliers' exodus from China won't slow down under Biden
Exposing Apple Mini M1 SoC
Taiwan PC monitor shipments to drop in 4Q20, says Digitimes Research
The Best Smartphones
Autonomous Vehicle Software Analyzes and Predicts Driving Events
MORE INDUSTRY NEWS

Soldering Immersion Tin



Soldering Immersion Tin
This paper focuses on awareness of factors attributed to soldering i-Sn including IMC formations in relation to reflow cycles and solderability performance.
Production Floor

DOWNLOAD

Authored By:


Rick Nichols and Sandra Heinemann - Atotech Deutschland GmbH

Summary


The stimulating impact of the automotive industry has sharpened focus on immersion tin (i-Sn) more than ever before. Immersion tin with its associated attributes, is well placed to fulfill the requirements of such a demanding application.

In an environment dominated by reliability, the automotive market not only has very stringent specifications but also demands thorough qualification protocols. Qualification is ultimately a costly exercise. The good news is that i-Sn is already qualified by many tier one OSATs.

The focus of this paper is to generate awareness of the key factors attributed to soldering i-Sn. Immersion tin is not suitable for wire bonding but ultimately suited for multiple soldering applications. The dominant topics of this paper will be IMC formations in relation to reflow cycles and the associated solderability performance.
Under contamination free conditions, i-Sn can provide a solderable finish even after multiple reflow cycles. The reflow conditions employed in this paper are typical for lead free soldering environments and the i-Sn thicknesses are approximately 1 micrometer.

Conclusions


Whilst i-Sn can be shown to be a reliable final finish for soldering even after multiple thermal ageing tests that could feasibly be encountered in production, uncontrolled external influences can result in poor results. These are not only problematic to i-Sn final finishes and can be eliminated by good practice.

The production environment is a complex one where controls and good practice can help to ensure high yields. This paper proves that i-Sn can provide a reliable solderable finsh with a long shelf life and a compatibility to realistically challenging production environments.

Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Modify Rework Procedures for Assemblies Fabricated Using OSP?
What Causes Solder Icicles During Wave Soldering
Review of Tin-Copper and Tin-Nickel Intermetallic Thickness
Can High Particle Concentrations Impact PCB Assembly?
Trouble With Skewed DPAK Components
Moisture Barrier Bag Issues
How to Reduce Voiding on QFN Components
Can Mixing Wave Solder Pallets Cause Contamination?
MORE BOARD TALK
Ask the Experts
Reflow Oven Calibration Schedule
Insufficient Plated Hole Fill with Electrolytic Capacitors
Through Hole Connector Solder Joint Hole Fill
Selective Solder System Purchased At Auction
Out-gassing and Cleaning
Stencil Cleaning Procedure
Challenging Cleaning Problem
Selective Printing for BGA Components
MORE ASK THE EXPERTS