Research
Stencil Printing Yield Improvements
Overcome Nodules and Scratches on Wire Bondable Plating on PCBs
Solder Paste Selection for Bottom Termination Components Attach
Jetting Solder Paste Opens Up New Possibilities
Advances Autonomous Driving V2X Technologies
Surface Insulation Resistance of No-Clean Flux Residues
Jetting Conductive Adhesives with Silver Coated Polymer Particles
Residues on Probing PCBAS-Consistent Connections Across No-Clean Fluxes
MORE RESEARCH
Latest Industry News
The Exodus Of Chinese Manufacturing
Autonomous Vehicles in China
How Much Gold Is in Your Computer and How Efficient It Is to Reclaim It
All must come aboard for a smooth ride to a carbon-neutral future
Memory Technologies Confront Edge AI's Diverse Challenges
How to Make Big Decisions When Facing an Unpredictable Future
Gartner Says Worldwide Robotic Process Automation Software Revenue to Reach Nearly $2 Billion in 2021
China rolls out fresh policies to boost hydrogen vehicle sales
MORE INDUSTRY NEWS

Improved Flux Reliability of Lead-Free Solder Alloy Solder Paste



Improved Flux Reliability of Lead-Free Solder Alloy Solder Paste
This paper covers a type of 'crack free' flux paste designed to inhibit cracking under extreme environments. Includes electro-chemical migration tests dew ...
Materials Tech

DOWNLOAD

Authored By:


Shantanu Joshi, Jasbir Bath, Roberto Garcia
Koki Solder America Inc., USA

Mitsuyasu Furusawa, Junichi Aoki, Manabu Itoh
Koki Company Ltd., Japan.

Summary


In recent years, a growing number of electronic devices are being incorporated into automotive and other high reliability end products where the challenge is to make these devices more reliable. The package size of the devices is largely driven by the consumer industry with their sizes getting smaller making it harder to assemble and be reliable at the same time. For automotive and other high reliability electronics product, it is of the utmost priority to secure high reliability because it directly involves human life and safety. Challenges include selecting an appropriate solder alloy and having good reliability of the solder paste flux.

For solder alloys, much development has been done and is in progress. For the solder paste flux, it is important that the flux intended for automotive and other high reliability applications should have reliable insulation resistance even in an atmosphere of high temperature and high humidity. To meet these requirements, a type of 'crack free' flux paste was developed to inhibit cracking under extreme environments making it more reliable with stringent surface insulation resistance and electro-migration criterion from automotive and other high reliability product manufacturers. Crack-free flux residues help to prevent electro-chemical migration caused by moisture entering through the flux residue cracking. In addition, crack-free residues act as a type of conformal coating providing a consideration to assemble without conformal coating use for certain applications.

Experiments were carried out to test the reliability of the flux according to various industry electro-chemical migration and dew test standards using IPC and JIS (Japan Industrial Standard) test boards. The flux residue showed no indication of cracking after pre-conditioning from-30 degrees C to 80 degrees C accelerated thermal cycling for 1,000 cycles followed by testing with no evidence of electro-chemical migration with a variety of board line widths and spacings used on the test boards. Printing, wetting, voiding and reflow tests with components were also carried out to make sure that the developed solder paste was appropriate for high volume manufacturing with results reported.

Conclusions


A lead-free solder paste was developed which was resistant to cracking during thermal cycling. This resistance to cracking was shown to provide reliable insulation resistance even under conditions of high temperature and high humidity using various industry test methods which helped to prevent electro-chemical migration caused by moisture entering through the flux residue cracks. The crack-free residue acted as a type of conformal coating providing a consideration to assemble without conformal coating use for certain applications.

Printing, wetting, voiding and reflow tests with components using the developed paste indicated it could be used in high volume electronics manufacturing which has been validated in production.

Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Solder Pallets With Titanium Inserts - Yes/No?
What Rate is World Class for SMT Machines?
Selective Solder Pot Temperatures
Top Side Reflow Causing Solder Balls
Trends for Printing Ultra Miniature Chips
Should We Measure Solder Paste Thickness?
Cleaning R.F. Circuits - Aqueous or Vapor?
Why Should We Consider Smart Feeders?
MORE BOARD TALK
Ask the Experts
BGA reballing question
Conformal Coating Press Fit Connectors
Dust contamination after selective soldering
Moisture Sensitivity Level for Bare Boards
Contamination Using Solvent Dispensers
Challenges Placing RF Shields During SMT Assembly
Seeking Advise for a Solder Reflow Recipe
Critical Part Fixture During Reflow
MORE ASK THE EXPERTS