Technologies and Standards to Realize Smart Manufacturing
SIR Test Method for Developing Evidence for the Production Assembly
Attributes of Cored Solder Wire in LED Luminaire Soldering
Selective Removal of Conformal Coatings by Pulsed Ultraviolet Lasers
Effect of Assembly Pitch and Distance on Solder Joint Thermal Cycling Life
Hybrid Conformal Coatings for Mitigating Tin Whiskers
Printing and Assembly Challenges for QFN Devices
Pad Cratering Susceptibility Testing with Acoustic Emission
Latest Industry News
Will iPhone 13 Trigger Headaches and Nausea?
You'll hear a lot about how boring the iPhone 13 is, but Apple is still poised to continue its sales super cycle
Foxtron, Taiwan's First EV, Leaks After Arriving in the Country: How Come?
NI, Elektro-Automatik Join Forces for EV Battery Testing
China's manufacturing growth slows
To Manage Your Time Better, Think Of It Like A Balloon
Out of the Verification Crisis: Improving RTL Quality
Deep Learning Method Produces Holograms Instantly

Second Generation Pb-Free Alloys

Second Generation Pb-Free Alloys
Paper covers shortcomings of current alloys, namely SAC305, and presents data for various new alloys which show promise as replacement materials.
Materials Tech


Authored By:

Randy Schueller, Ph.D., Nathan Blattau, Ph.D., Joelle Arnold, and Craig Hillman, Ph.D.
DfR Solutions, College Park, MD, USA


This paper will discuss the shortcomings of current LF alloys (namely SAC305) and present recent data for various new alloys which show promise as replacement materials. These newer alloys offer important reliability improvements but do have some issue that need resolution before mass implementation. Shock and vibration data will be provided, as well as thermal cycle data. The primary focus will be on SnCuNi and SAC105X alloys and how they can be used effectively in the Pb-free electronics industry going forward.


The transition from SnPb to Pb-free has been fast and furious for an industry where it can take a decade or more to gather the necessary reliability data. SAC305 was introduced as the Pb-free alloy for surface mount applications and many would argue has been rather successful considering the tight timescale. Deficiencies have since been identified and a transition has begun to newer alloys. For handheld products the first change was to SAC105 for improved shock resistance. It was then recognized that the loss in thermal cycle resistance was not acceptable for other applications.

The next push will be to achieve improvements in shock and thermal cycle behavior. Sn-Cu-Ni, SAC105C, SAC105M, and SACX show promise but all require higher process temperatures. It is likely that one or more of these alloys will become popular for BGA balls and surface mount applications in the future. It is also possible, but less likely, that a lower melting temperature alloy such as SnAgBi could be brought back to the table after the threat of Pb contamination has subsided. In any case, we should be prepared for a period of transition that will be a challenge for both BGA component suppliers and electronic manufacturers.

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
01005 Component Challenges and Bugs
Insulation Between Overhanging Component Lead and Circuit Conductor
Sticky Residue Under Low Clearance Parts
Finding the Cause of Cold Solder Joints
Soldering Relays Intrusively in Lead Free Process
Printing vs. Dispensing
Maximum Board Temperature During Tin-Lead
Is There a Spacing Spec for SMD Components?
Ask the Experts
Options for Reballing BGA Components
Solder Paste Viscosity
MSD Components Baked Too Long
Aluminum Trays and Rapid Static Discharge
Seeking IPC and J-STD Definitions
Is Component Lead Damage Reparable?
BGA Solder Ball Shelf Life
Conformal Coating Press Fit Connectors