Electronics Assembly Knowledge, Vision & Wisdom
Stereo Vision Based Automated Solder Ball Height Detection
Stereo Vision Based Automated Solder Ball Height Detection
An automatic, stereo vision based, in-line ball height inspection method is presented. This includes an imaging setup with a computer vision algorithm.
Production Floor

Authored By:
Jinjin Li
School of Electrical, Computer, & Energy Engineering, Arizona State University, Tempe, AZ, USA

Bonnie L. Bennett, Lina J. Karam1, and Jeff S. Pettinato
Intel Corporation, USA
,{url:'http://www.circuitinsight.com/videos/programs_final.mp4'}], clip:{autoBuffering:true, autoPlay:true, scaling:'scale' } }).ipad();
Summary
Solder ball height inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height inspection tools such as laser profiling, fringe projection and confocal microscopy are expensive, require complicated setup and are slow, which makes them difficult to use in a real-time manufacturing setting. Therefore, a reliable, in-line ball height measurement method is needed for inspecting units undergoing assembly.

Existing stereo vision measurement techniques determine the height of objects by detecting corresponding feature points in two views of the same scene taken from different viewpoints. After detecting the matching feature points, triangulation methods are used to determine the height or depth of an object. The issue with existing techniques is that they rely on the presence of edges, corners and surface texture for the detection of feature points. Therefore, these techniques cannot be directly applied to the measurement of solder ball height due to the textureless, edgeless, smooth surfaces of solder balls.

In this paper, an automatic, stereo vision based, in-line ball height inspection method is presented. The proposed method includes an imaging setup together with a computer vision algorithm for reliable, in-line ball height measurement. The imaging set up consists of two different cameras mounted at two opposing angles with ring lighting around each camera lens which allows the capture of two images of a semi-conductor package in parallel.

The lighting provides a means to generate features on the balls which are then used to determine height. Determining and grouping points with the same intensity on the ball surface allows the formation of curves, also known as iso-contours, which are then matched between the two views. Finally, an optimized triangulation is performed to determine ball height. The method has been tested on 3 products and exhibits accuracy within 4um mean squared error compared to confocal ground truth height, and the coplanarity of BGA package as derived from calculated substrate depth results.
Conclusions
A robust automatic solder ball height detection scheme is presented to allow automated inspection and automated measurement of solder ball height. The proposed method is fully automated and can benefit the manufacturing process by measuring ball height and package coplanarity accurately. The proposed method has been implemented in software and was deployed on a standalone PC using the 2D images obtained from a simple imaging setup consisting of two cameras and directional ring lights.

The proposed method can accurately and consistently compute solder ball heights. The computed solder ball heights are within a 4um mean squared error range as compared to the results produced by the confocal tool. The proposed method has a low computational complexity and enables real-time in-line ball height and warpage inspection during manufacturing.
Initially Published in the IPC Proceedings
Submit A Comment

Comments are reviewed prior to posting. Please avoid discussion of pricing or recommendations for specific products. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Company


E-mail


Country


Comments


Authentication

Please type the number displayed into the box. If you receive an error, you may need to refresh the page and resubmit the information.



Related Programs
bullet Flowers of Sulfur Creep Corrosion Testing of Populated PCBs
bullet Signal Transmission Loss Due to Surface Roughness
bullet Thermal Mechanical Fatigue of a 56 I/O Quad-Flat No Lead Package
bullet Numerical Study on New Pin Pull Test for Pad Cratering
bullet Should We Invest in 3D Optical Inspection?
bullet Implementing Robust Bead Probe Test Processes
bullet Test Probe Problems After Pin-In-Paste
bullet Industry Progress from 2005 to Present Day
bullet Testing of Soldering Materials vs. Soldering Processes
bullet Tin Flakes/Splashes in SMT
More Related Programs