Electronics Assembly Knowledge, Vision & Wisdom
Reliability of Lead-Free LGAs and BGAs
Reliability of Lead-Free LGAs and BGAs
A theory is proposed that substantial differences in SAC305 solder joint Sn grain morphology may explain, at least partially.
Analysis Lab

Authored By:
Denis Barbini Ph.D. & Michael Meilunas
Universal Instruments Corporation
Conklin, NY, USA
,{url:'http://www.circuitinsight.com/videos/programs_final.mp4'}], clip:{autoBuffering:true, autoPlay:true, scaling:'scale' } }).ipad();
Summary
An accelerated thermal cycle experiment comparing similarly constructed area array devices representing Land Grid Array(LGA) and Ball Grid Array (BGA) technology with 0.254, 0.30, and 0.40mm diameter SAC305 solder balls was performed. The devices were subjected to three thermal cycle conditions in order to promote 2nd level solder fatigue. Failure data was compared using Weibull analyses.

The results show that time to failure is highly influenced by the package pitch and thermal cycle temperatures in a manner predicted by simple mechanics. However, there were instances in which the effect of solder ball size did not fit the traditional solder joint reliability model in which increasing solder joint standoff height improves reliability (i.e. more cycles to failure). A theory is proposed that substantial differences in SAC305 solder joint Sn grain morphology may explain, at least partially, the discrepancies and evidence to support this theory is presented.
Conclusions
A strain rate approach for analyzing the ATC reliability data appears to better describe the results than a strain range approach. Using the strain rate approach it has been shown that SAC305 solder joints approximating LGA-like joint qualities (shape, height and microstructure) can be more reliable than larger BGA-like SAC305 solder joints for a given strain rate.

Evidence from this experiment and from literature suggests that the 'small' SAC305 solder joints tend to develop an interlaced twinned Sn grain morphology which has significantly different thermal-mechanical properties than the single grain or beach ball morphology commonly formed in BGA-sized solder joints. These findings suggest that low-profile packages like LGA can be quite reliable in ATC testing - if the proper microstructure forms.
Initially Published in the IPC Proceedings
Submit A Comment

Comments are reviewed prior to posting. Please avoid discussion of pricing or recommendations for specific products. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Company


E-mail


Country


Comments


Authentication

Please type the number displayed into the box. If you receive an error, you may need to refresh the page and resubmit the information.



Related Programs
bullet How Many Fiducials Pre Solder Paste Stencil?
bullet Nanocopper Based Paste for Solid Copper Via Fill
bullet Fracture of Lead-Free Joints
bullet Microstructure and Reliability of Low Ag, Bi-Containing Solder Alloys
bullet Characterization of Solder Pastes Based on Two Alternative Alloys
bullet Mechanical Behavior of Bi-Containing Pb-Frees
bullet Lead-Free Alloys with Ultra-High Thermo-Mechanical Reliability
bullet Solder Paste Prep Before Use
bullet Low Temperature Solder Alloys for Portable Electronics
bullet Investigation into Lead-Free Low Silver Solder Wire for Electronics
More Related Programs