Electrical Testing of Passive Components
Electrochemical Methods to Measure Corrosion Potential of Flux Residue
Engineered Flux for Low Temperature Solders
Advanced Printing for Microelectronic Packaging
Assembly Reliability of TSOP/DFN PoP Stack Package
Solder Joint Embrittlement Mechanisms, Solutions and Standards
Through-Hole Rework for Challenging Components
Advances in Power Electronics
Latest Industry News
Hon Hai Unveils Three Electric Vehicle Models
Get Ready For The Next Generation Of Wearable Tech
Wistron to spend NT$10bn on facilities in Kaohsiung
Ghost Robotics CEO on Armed Robots for the U.S. Military
3 Ways to Get Comfortable With Changing Times
The prospect of Processing In Memory (PIM) in memory systems for AI applications
Biggest Tech Companies Now Building the Biggest Data Pipes
The Versatile Preform

Glass Panel Packaging: Technologies and Applications

Glass Panel Packaging: Technologies and Applications
This paper describes the critical glass packaging technologies, their R&D and commercialization status as well as all the current and future applications.
Production Floor


Authored By:

Rao Tummala, Bartlet Deprospo, Shreya Dwarakanath,
Siddharth Ravichandran, Pratik Nimbalkar,Nithin Nedumthakady, and Madhavan Swaminathan
3D Systems Packaging Research Center, Georgia Institute of Technology


The semiconductor and systems landscape are changing dramatically. As Moore's law begins to come to an end for many reasons that include minimal increase in transistor performance and in computer performance from node to node but at higher power, the industry has begun to shift to interconnections, referred to as Moore's law for Packaging. This focus addresses both the need for homogeneous and heterogeneous integrations by interconnecting smaller chips and smaller components with higher performance at lower cost and interconnecting them as multichip in 2.5 and 3D architectures. This is also called extending Moore's law, not in a single chip but with multiple chips interconnected horizontally and vertically.

This strategy is very consistent with the dramatic and emerging changes in electronic systems such as in HPC, AI and a new era of self-driving and electric cars that potentially think and drive better than humans. This requires device, packaging, and computing architecture paradigms with an entirely different vision and strategy than transistor scaling alone. Packaging, which can be viewed broadly as system scaling, is now viewed as replacing Moore's law for enabling better devices and better systems, unlike in the past.

Glass packaging is being developed by Georgia Tech and its industry partners, as the most leading-edge packaging, consistent with the above systems needs in cost, performance, functionality, reliability, and miniaturization. It compares and contrasts glass packaging against other leading-edge technologies such as Si and embedded packaging.


Glass packaging is emerging as next generation packaging platform beyond organic and silicon packaging. It has been developed in both chip first and chip-last 2.5D and 3D architectures. Georgia Tech and its industry partners have developed all the building block technologies necessary to manufacture. Currently two companies are making plans to manufacture in 2020.

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Can Tape Residue Contaminate a Clean Tank?
Suggested Stencil Wipe Frequency?
Reflow Oven Zone Separation Challenges
When To Use Adhesive To Bond SMT Components
How To Clean a Vintage Circuit Board Assembly?
PCBA Inspection Concerns
When is it Time to Switch from Manual Assembly to Automation?
Keys for Moisture Sensitive Device Control
Ask the Experts
Solder Paste Life on the Stencil
ESD and Humidification
Water Wash vs. No-clean
Dam & Fill vs. Conformal Coating
Solder Joint Blow Holes
Conformal Coating Bubbles
What Causes Component Rotation During Reflow?
Mixed Process Solder Joint Appearance, Smooth or Grainy?