In-Line Testing of Highly Panelized PCBAs with Parallel Functional Test
Electrochemical Reliability as a Function of Component Standoff
Reliable Nickel-Free Surface Finish for High-Frequency-HDI PCB
Enclosed Media Printing as an Alternative to Metal Blades
Risk for Ceramic Component Cracking Dependent
Nanocopper Based Paste for Solid Copper Via Fill
Fluxless Die Attach by Activated Forming Gas
Embracing a New Paradigm: Electronic Work Instructions (EWI)
Latest Industry News
Global Chip Shortage Is Impacting Carmakers
VIEWPOINT 2021: Raymond M. LaFleur, General Manager of Overseas Sales and Marketing, DEN-ON
VIEWPOINT 2021: Mark Cottom, Vice President of Sales & Marketing, National Circuit Assembly
Geely and Foxconn form partnership to build cars for other automakers
Samsung Debuts World's First Wi-Fi 6E Mobile Phone
IBM tops US patent list for 28th year in a row with more than 9,100 patents granted
5G Makes Waves At CES 2021
4 Reasons a Retreat Into Nature Will Increase Productivity

In-Line Testing of Highly Panelized PCBAs with Parallel Functional Test

In-Line Testing of Highly Panelized PCBAs with Parallel Functional Test
The manufacturing process challenges faced by electronics manufactures producing large panels of small boards is discussed.
Production Floor


Authored By:

John VanNewkirk
CheckSum LLC


As semiconductor manufactures continue deliver more capabilities in ever smaller packages, most circuit board assemblies are shrinking. High volume electronic modules are increasingly manufactured in panels of 10, 20, or even 40 identical boards. The increase in panel density is driving substantial efficiency and throughput gains on the SMT lines; however, the typical testing processes is unable to match this increased throughput.

Traditional test process throughput can easily be 5-10x slower than production throughput for these boards. This mismatch in throughput capability is forcing manufacturers to choose between high levels of untested work in process (WIP) inventory or giving up the throughput gains by slowing down the SMT line.

New technology is available to provide simultaneous electrical functional testing of all the boards in the panel, allowing test to occur in line with production. System architecture, application development, and integration will be discussed. Process benefits, including case studies, will be provided, as will industry trends that drive manufacturers to reduce human handling and scrap reworked boards. Lastly, the status of these technologies, current capabilities, limitations, and commercial rollout plans detailed.


In summary, small boards create numerous problems for electronics manufacturers because of the mismatch between production throughput and test throughput. This mismatch has been addressed by manufacturers in three ways: slowing production, batch processing with WIP Inventory buildup, and adding test capacity to match production throughput. Each of these approaches has costs and side-effects for manufacturers.

A new kind of test technology utilizes simultaneous functional testing of the entire panel of small boards. Parallel Test provides benefits to manufacturers by matching SMT line throughput. The major benefits of this new technology are: Enabling Inline Test to eliminate human handling, Provide Real-Time Data to Intelligent Digital Systems, Eliminate the need for WIP Inventory, reducing rework issues, increasing throughput and efficiency, and simplifying the process by eliminating test cell operations.

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Is There a Spacing Spec for SMD Components?
Maximum Board Temperature During Tin-Lead
Is HASL a Good Choice for Surface Finish?
Connector Bowing During Reflow Process
Has My Flux Expired?
Long Term Component Storage
Processing Circuit Boards with BGAs On Both Sides
What Causes Solder Balls During Hand Soldering?
Ask the Experts
Mixing Different SAC305 Solders
Dross Particles Sticking to PCBs
Cleaning with Sodium Bicarbonate
Conformal Coating Over Heat Sinks
Flux Oozing from Insulated Wires
Conformal Coating in Low Humidity Environments
Tiny Solder Balls After Reflow
Solder Paste Alloy Check