Research
In-Line Testing of Highly Panelized PCBAs with Parallel Functional Test
Electrochemical Reliability as a Function of Component Standoff
Reliable Nickel-Free Surface Finish for High-Frequency-HDI PCB
Enclosed Media Printing as an Alternative to Metal Blades
Risk for Ceramic Component Cracking Dependent
Nanocopper Based Paste for Solid Copper Via Fill
Fluxless Die Attach by Activated Forming Gas
Embracing a New Paradigm: Electronic Work Instructions (EWI)
MORE RESEARCH
Latest Industry News
Global Chip Shortage Is Impacting Carmakers
VIEWPOINT 2021: Raymond M. LaFleur, General Manager of Overseas Sales and Marketing, DEN-ON
VIEWPOINT 2021: Mark Cottom, Vice President of Sales & Marketing, National Circuit Assembly
Geely and Foxconn form partnership to build cars for other automakers
Samsung Debuts World's First Wi-Fi 6E Mobile Phone
IBM tops US patent list for 28th year in a row with more than 9,100 patents granted
5G Makes Waves At CES 2021
4 Reasons a Retreat Into Nature Will Increase Productivity
MORE INDUSTRY NEWS

Risk for Ceramic Component Cracking Dependent



Risk for Ceramic Component Cracking Dependent
The paper discusses the differences of the alloy, based stress in ceramic components due to passive cycle tests, real customer tests, and stress analyses.
Analysis Lab

DOWNLOAD

Authored By:


J. Trodler Dipl.-Ing.
Heraeus Deutschland GmbH&Co.KG,
Hanau Germany

R. Dudek Dr.-Ing., Fraunhofer ENAS, Chemnitz Germany
M. Rollig Dr.-Ing., Fraunhofer IKTS, Dresden Germany

Summary


New solder alloy development for high temperature applications have increased the last few years; for example, automotive applications now use both Innolot and/or HT1 alloys, especially when the devices have to work at temperatures up to 170 Celsius. For the solder alloy and the interconnection itself, there are some fatigue life advantages when using Innolot, especially for thermal cycles - 40/+150 Celsius. On the other hand, by using Innolot there is a relatively high thermo-mechanical stress induced which can create ceramics defects at the passive components. The paper will compare and discuss the differences of the alloy, based stress in ceramic components due to passive cycle tests, real customer tests, and stress analyses based on the finite element method.

Conclusions


During physical testing, standard SAC alloys show fatigue, while both high temperature alloys produced acceptable results for the solder joint, and the IL alloy produced a ceramic crack after TCT. Due to additional active TCT tests, utilizing other alloys, there were also similar results detected. Field test conditions that seems to be non-critical. By an FEM it has been analyzed the stress on the passive components with different alloys. With regard to component stress, IL was determined to be the most critical alloy, with HT1 producing the lowest stress. Therefore, when there is a risk of ceramic cracks, using an alloy with a higher shear rate may provide a possible solution. Further activities will analyze other combinations such as devices with conformal coating etc. In addition, the knowledge can influence the quality of the ceramic passive components.

Initially Published in the SMTA Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Is There a Spacing Spec for SMD Components?
Maximum Board Temperature During Tin-Lead
Is HASL a Good Choice for Surface Finish?
Connector Bowing During Reflow Process
Has My Flux Expired?
Long Term Component Storage
Processing Circuit Boards with BGAs On Both Sides
What Causes Solder Balls During Hand Soldering?
MORE BOARD TALK
Ask the Experts
Mixing Different SAC305 Solders
Dross Particles Sticking to PCBs
Cleaning with Sodium Bicarbonate
Conformal Coating Over Heat Sinks
Flux Oozing from Insulated Wires
Conformal Coating in Low Humidity Environments
Tiny Solder Balls After Reflow
Solder Paste Alloy Check
MORE ASK THE EXPERTS