Backward Compatible Solder Joint Reliability Under Accelerated Conditions
PBGA Solder Stress Analyses Under Random Vibration
Engineered Flux for Low Temperature Solders
Counterfeit Electronics Component Conundrum with Smart Labeling
Requirements on a Class 0 EPA - ESD Equipment and Measurements
Improved Reliability of Jet Dispensable Polymeric Coating Material
Position Accuracy Machines for Selective Soldering Fine Pitch
The Quantitative Assessment of Mixed BGA Joint
Latest Industry News
U.S. doubles down on protecting university research from China
EDITORIAL: The economy is at a turning point
EVs to be assembled like smartphones: Hon Hai
Apple had a blowout quarter in China. But can its success there continue?
Why Apple may never catch Microsoft in TV
Tech Check: The Apple Store's secrets, the Web goes .XXX
Autonomous vehicles could be vulnerable to attacks
Why We’re in the Midst of a Global Semiconductor Shortage

Protocol Development for Testing Solder Reliability

Protocol Development for Testing Solder Reliability
This paper updates progress in the development of methods for investigating solder joint reliability in a combined environment of vibration and thermal cycle testing.
Analysis Lab


Authored By:

John McMahon, Polina Snugovsky, Jeffrey Kennedy, Subramaniam Suthakaran, Russell Brush

Joseph Juarez, Milea Kammer

Ivan Straznicky
Curtiss Wright

David Hillman, David Adams
Rockwell Collins

Stephan Meschter
BAE Systems

Doug Perovic
University of Toronto


This paper updates progress in the development of methods for investigating solder joint reliability in a combined environment of vibration and thermal cycle testing. Since combined environmental testing is an evolving concept, no default approach or standard test protocol currently exists. The need to develop such a protocol arises from the fact that materials may behave differently under combined stress conditions; exhibit different failure modes and impact the overall reliability. Combined environmental testing would therefore provide the closest approximation to actual field conditions and the best means of evaluating the performance capability of solder joints. In developing this protocol, consideration was given to obtain relevant information from both a reliability perspective (number of cycles to failure) as well as micro-structural stand point (at time of failure).

Further, in combining the two conditions, time to failure had to be weighed against the overall expected time of the test; when performed alone, vibration testing is often completed within a single day, while thermal cycle testing can take up to six months to complete. Phase 1A of this project is complete and results will be presented to compare the performance of SAC305 alloy on ENIG and OSP solder pad surface coatings. Phase 1B which is in progress will involve isothermal vibration life testing over the range of alloys and temperatures. Phase 2 will then use the information to evaluate, characterize and compare various lower melt, high reliability, Bi-containing alloys against currently used SAC305 and Sn-Pb solders under combined environmental stresses.


Test procedures and data collection systems for isothermal step stress testing have been validated and refined for longer term testing.

Step stress testing of units with resonance frequencies near 50 Hz can generate solder fatigue failure modes at a step length of 100K cycles and step increments of 1G.

Test temperature is the dominant factor in determining expected lifetime under sine wave vibration.

Technology Type is also a significant factor.

Surface Finish is not a significant factor over the range of this testing but the Interaction between Surface finish
and test temperature is significant, affects the basic microstructure and deserves more investigation.

The interaction between test temperature and technology type is dependent on the geometry and mechanical properties of the various components but may also be impacted by the microstructural changes associated with device types.

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Issues With Fillets on Via Holes?
Solder Paste Beyond The Shelf Life?
Suggested Stencil Wipe Frequency?
Can Tape Residue Contaminate a Clean Tank?
When To Use Adhesive To Bond SMT Components
Reflow Oven Zone Separation Challenges
PCBA Inspection Concerns
How To Clean a Vintage Circuit Board Assembly?
Ask the Experts
How to Remove Oxidization from SMT Component Leads?
Cause of Green/Blue Oxide Buildup
Rework of Underfilled Array Packages
Acceptable Conductor Repair
Class 3 Cleaning Requirements
Cleaning No-Clean Solder Paste
Concerns With Silver Finish Component Leads
BGA Component Cleaning Spec