Stencil Printing Yield Improvements
Overcome Nodules and Scratches on Wire Bondable Plating on PCBs
Solder Paste Selection for Bottom Termination Components Attach
Jetting Solder Paste Opens Up New Possibilities
Advances Autonomous Driving V2X Technologies
Surface Insulation Resistance of No-Clean Flux Residues
Jetting Conductive Adhesives with Silver Coated Polymer Particles
Residues on Probing PCBAS-Consistent Connections Across No-Clean Fluxes
Latest Industry News
The Exodus Of Chinese Manufacturing
Autonomous Vehicles in China
How Much Gold Is in Your Computer and How Efficient It Is to Reclaim It
All must come aboard for a smooth ride to a carbon-neutral future
Memory Technologies Confront Edge AI's Diverse Challenges
How to Make Big Decisions When Facing an Unpredictable Future
Gartner Says Worldwide Robotic Process Automation Software Revenue to Reach Nearly $2 Billion in 2021
China rolls out fresh policies to boost hydrogen vehicle sales

FEA and Analysis for BGA-CGA Assemblies Under Thermal Cycling

In high-reliability applications ball grid array versions are used because of technology availability, lower cost, and lower CTE mismatches.
Materials Tech


Authored By:

Anupam Choubey and Reza Ghaffarian, Ph.D.
Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA, USA


Even though commercial off the shelf (COTS) column grid arrays (CGAs) have been widely used in high-reliability electronics-system applications, the ball grid array (BGA) versions are also becoming attractive because of newer technology availability, much lower cost, and lower CTE mismatches onto polymeric printed circuit boards (PCBs). For these reasons, and because of availability of extensive reliability data, university and industry sectors have developed and now offer software for projecting solder joint reliability for BGA assemblies subjected to thermal cycling conditions.

A commercial software recently developed was evaluated to determine its accuracy in projecting solder joint reliability comparing test data for BGAs and land grid arrays (LGAs) with 1156 balls/terminations. In addition, two dimensional finite element analyses (FEAs) were carried out to determine stress distribution for the LGA/BGA as well as for a CGA with 1272 columns. Only the FEA analysis was presented for CGA since the commercial software does not yet offer projection for this packaging style. Finally, this paper summarizes these findings and presents an easy to use analytical model developed to predict the behavior of BGA and CGA assemblies under thermal cycling conditions.


Within the last two years, the IPC/JEDEC team collaborating on guidelines on "Reliability & Design Finite Element Analysis Standard" indicate the need for more effective use of FEA. Projection approaches, as well as standardization of input parameter in FEA, are key in achieving acceptable projection of solder joint reliability with acceptable errors. Both a simple 2D FEA and the commercial software with a background theory were utilized to determine the effects of key package/board/solder parameters on assembly reliability and whether projection results reasonably agree with test results generated under various conditions. A summary of results are as follows:

1. The commercial software showed projected reliability for the BGA1156 reasonably well considering most industry data are for plastic BGAs. It underestimatedreliability of its LGA counterpart.

2. The trends for the effect of die size and thickness are in the right direction for the PBGA as is established by industry. However, the level of changes may not agree with industry data.

3. FEA was used to project the difference between BGA/LGA and CGA assembly reliability since the commercial software package covers only the BGA and possibly the LGA style packages.

4. Another simple to use analytical method showed the effect of height increase for BGA vs CGA as well the effect of double-sided mirror assembly configurations for BGAs/CGAs. The current analysis projected a lower reduction in thermal ycle fatigue life for double-sided mirror-image CGA assemblies than that for BGAs. No industry data is yet available for CGA double-sided mirror image.

The FEA modeling and software analyses are considered to be a preliminary exercise. Further work on these areas should shed some light on answering questions, both by FEA and by testing, as the level of reduction in fatigue life for LGAs and methods for their reliability improvement using tin-lead solder assembly. For SAC assemblies, literature data on the LGA indicate higher than expected assembly reliability under thermal cycling, which postulated to be due to larger grain sizes.

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Solder Pallets With Titanium Inserts - Yes/No?
What Rate is World Class for SMT Machines?
Selective Solder Pot Temperatures
Top Side Reflow Causing Solder Balls
Trends for Printing Ultra Miniature Chips
Should We Measure Solder Paste Thickness?
Cleaning R.F. Circuits - Aqueous or Vapor?
Why Should We Consider Smart Feeders?
Ask the Experts
BGA reballing question
Conformal Coating Press Fit Connectors
Dust contamination after selective soldering
Moisture Sensitivity Level for Bare Boards
Contamination Using Solvent Dispensers
Challenges Placing RF Shields During SMT Assembly
Seeking Advise for a Solder Reflow Recipe
Critical Part Fixture During Reflow