Fill the Void II: An Investigation into Methods of Reducing Voiding
Wettable-Flanks On Bottom-Termination Components in Mass Production
Improved Flux Reliability of Lead-Free Solder Alloy Solder Paste
Investigation into Lead-Free Low Silver Solder Wire for Electronics
Effects of Composition and Isothermal Aging on Microstructure Performance
How Does Printed Solder Paste Volume Affect Solder Joint Reliability?
Wearable Electronics & Big Data = High Volume, High Mix SMT
Evaluation of Molded Flip-chip BGA Packages
Latest Industry News
MIT Turns 'Magic' Material Into Versatile Electronic Devices
U.S. Commerce Dept. presses Taiwan for more chips to automakers
Ford is betting that solid-state batteries will cut EV costs
How to Be a Role Model of Resilience
IoT and the circular economy
Embedded Vision at the Tipping Point
Dell lays out its plans for the future
Ford And Volkswagen Have Major Breakthrough On Self-Driving Cars

Fill the Void II: An Investigation into Methods of Reducing Voiding

Fill the Void II: An Investigation into Methods of Reducing Voiding
This paper is a continuation of previous work on voiding. The voiding results are summarized and recommendations made for reduction of voiding.
Production Floor


Authored By:

Tony Lentz
FCT Assembly

Patty Chonis and JB Byers
A-Tek Systems


Voids in solder joints plague many electronics manufacturers. Do you have voids in your life? We have good news for you, there are many excellent ways to "Fill the Void." This paper is a continuation of previous work on voiding in which the following variables were studied: water soluble lead-free solder pastes, a variety of stencil designs, and reflow profiles. Quad Flat No-Lead (QFN) component thermal pads were used as the test vehicle. The voiding results were summarized and recommendations were made for reduction of voiding.

In this work several new variables and their effects on voiding were studied. No clean lead-free solder pastes were tested and compared to water soluble lead-free solder pastes. Water soluble solder pastes tend to create more voiding than no clean solder pastes. This is due to the relatively higher volatile content in water soluble solder pastes, and also due to the hygroscopic nature of water soluble solder pastes. The particle size of the solder powder was studied; using IPC type 3, IPC type 4 and IPC type 5 powders.

The oxide content of the solder powder increases with decreasing particle size and higher oxide content tends to produce higher voiding levels. Different manufacturers of solder powder were also studied. Solder powder from one manufacturer might lead to higher voiding than from another manufacturer. Finally, the effects of convection reflow were compared to vapor phase reflow with and without vacuum.

Convection reflow is commonly used and voiding results from this type of reflow are well documented. Vapor phase reflow is conducted in an oxygen free environment which tends to reduce voiding. Vapor phase systems also lend themselves well to the use of vacuum because the equipment is sealed and vapor tight. Integrating vacuum creates differential pressure between the void and the surrounding atmosphere during the liquid stage which facilitates the escape of the trapped gases. The lowering of the gas pressure outside the solder joints will aid in reduction of voiding.

Reworking solder joints with voids is not an easy task. This typically involves removing the affected components and re-soldering them with the hope that voiding might be reduced. This is a very labor intensive process which can thermally stress nearby components. The possibility of using a vapor phase reflow system with vacuum to rework solder joints with voids was investigated.

In many cases voiding will be reduced only if a combination of mitigation strategies are used. Recommendations for combinations of solder paste, stencil design, reflow profile, and type of reflow are given. The aim of this paper is to help the reader to "Fill the Void."


Voiding in solder joints is affected by many factors. Solder paste has a dramatic effect on voiding. In general, no clean lead free solder pastes generate lower voiding than water soluble lead free solder pastes. Solder powder size was shown to have an effect on voiding. Voiding tends to decrease with decreasing solder powder size. Solder powder from different manufacturers also has an effect on voiding due to differences in the manufacturing process. Stencil design has an impact on voiding, although this impact can be slight when compared to other factors.

ENIG and OSP surface finishes had little affect on the voiding levels with the solder paste used in this evaluation. Reflow profile has a large effect on voiding, and the reflow profile must be tuned to minimize voiding with each solder paste. Vapor phase reflow and convection reflow with nitrogen reduced voiding as compared to convection reflow in air. The use of vapor phase reflows with vacuum gave extremely low voiding levels. It was also shown that vapor phase reflow with vacuum can be used to rework and reduce existing voids in soldered components.

Only some of the factors that influence voiding were studied in this work. There is much more testing to be done. Due to the commonplace use of bottom terminated components, it is clear that voiding will be an issue that many must address. The authors will continue to study factors that influence voiding in an effort to help the reader to "Fill the Void."

Initially Published in the IPC Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Cure for the Grape Effect
Removing Warpage from PCBAs
Solder Paste Inspection - When and Why
Predicting Mid-Chip Solder Balling
Will Typical No Clean Paste Pass an SIR Test?
How Do You Remove Oxidation from PCBs?
Consensus for Baking Prior to Rework?
How Many Fiducials Per Stencil
Ask the Experts
Question About Dry Storage of PCBA's
Baking Concerns for Stacked Trays of Components
Two Year Component Date Code Mandate
Assembly Question for Soldering USB Connectors
Tough Hand Soldering Problem
Challenges with 01005 Components
What Is Causing Connectors to Bow?
Acceptability Standard for Plated Hole Barrel Fill