Board Level Reliability Comparison of BGA and LGA Packages



Board Level Reliability Comparison of BGA and LGA Packages
Study compares board level reliability of BGA and LGA packages mounted with an LGA footprint. Yield, drop test and thermal performance were evaluated.
Analysis Lab

DOWNLOAD

Authored By:


Robert Darveaux, Howard Chen, Shaul Branchevsky, Bhuvaneshwaran Vijayakumar
Skyworks Solutions, Inc.
Irvine, CA, USA

Ben Zarkoob, Wyatt Huddleston, Christopher J. Berry,
Amkor Technology, Inc.
Chandler, AZ, USA

Fenimore Chen
Integrated Service Technology, Inc.
Hsin-chu City, Taiwan R.O.C.

Summary


The present study compares board level reliability of both BGA and LGA packages mounted to motherboards with an LGA footprint. SMT yield, drop test performance, and thermal cycle performance were evaluated. Finite element analysis was also used to compare with the measured reliability testing. Both the BGA and LGA devices self-align well without open, shorted, or inconsistent solder joints. The package can be displaced off the pad by no more than 0.200mm, and solder paste misprinting must be limited to 0.050mm. There were no confirmed failures in solder joints up to 3042 temperature cycles.

Simulation predicts that the LGA package should have 1.5X longer fatigue life than the BGA package due to a larger perimeter I/O pads, and additional ground pads in the interior of the module. There were no failures in drop testing up to 400 cycles. Overall, both modules showed excellent board level reliability that far exceeds typical consumer product requirements.

Conclusions


Both the BGA and LGA devices self-align well without open, shorted or inconsistent solder joints. The maximum allowable displacement off the pad is 0.200mm, and solder paste misprinting must be limited to 0.050mm.

There were no confirmed failures in solder joints up to 3042 temperature cycles.

Simulation predicts that the LGA package should have 1.5X longer fatigue life than the BGA package due to a larger perimeter I/O pads, and additional ground pads in the interior of the module.

There were no failures in drop testing up to 400 drop cycles.

Overall, both modules showed excellent board level reliability that far exceeds typical consumer product requirements.

Initially Published in the SMTA Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments