Research
In-Line Testing of Highly Panelized PCBAs with Parallel Functional Test
Electrochemical Reliability as a Function of Component Standoff
Reliable Nickel-Free Surface Finish for High-Frequency-HDI PCB
Enclosed Media Printing as an Alternative to Metal Blades
Risk for Ceramic Component Cracking Dependent
Nanocopper Based Paste for Solid Copper Via Fill
Fluxless Die Attach by Activated Forming Gas
Embracing a New Paradigm: Electronic Work Instructions (EWI)
MORE RESEARCH
Latest Industry News
Global Chip Shortage Is Impacting Carmakers
VIEWPOINT 2021: Raymond M. LaFleur, General Manager of Overseas Sales and Marketing, DEN-ON
VIEWPOINT 2021: Mark Cottom, Vice President of Sales & Marketing, National Circuit Assembly
Geely and Foxconn form partnership to build cars for other automakers
Samsung Debuts World's First Wi-Fi 6E Mobile Phone
IBM tops US patent list for 28th year in a row with more than 9,100 patents granted
5G Makes Waves At CES 2021
4 Reasons a Retreat Into Nature Will Increase Productivity
MORE INDUSTRY NEWS

RF Capacitor Material for Use in Printed Circuit Board



RF Capacitor Material for Use in Printed Circuit Board
A novel ceramic-functional-particle-filled polymer composite material has been developed for use either discrete elements on the PCBs.
Materials Tech

DOWNLOAD

Authored By:


Jin-Hyun Hwang, John Andresakis, Ethan Feinberg, Bob Carter, Yuji Kageyama, Fujio Kuwako
Oak-Mitsui Technologies
Hoosick Falls, NY USA

Summary


A novel ceramic-functional-particle-filled polymer composite material has been developed for the use either in discrete elements on the printed circuit board or in being embedded within the packaging substrate for high frequency circuit applications. This material provides the desired properties such as low loss at high frequencies, about 0.002 or less up to 10GHz, and high dielectric strength, among other improved properties.

The electrical properties were influenced significantly by the ceramic-functional-particle, i.e. type and particle size/distribution in the polymer matrix. Their contributions to the electric strength and temperature stability of capacitance which is an important material issue for practical device application will be discussed. In addition, capacitance tolerance for manufacturing embedded RF capacitor will be presented in terms of etching uniformity to minimize the variation of the capacitor electrode areas.

Conclusions


The ceramic filled organic-based composite material has been used to make RF capacitor laminates to compete with ceramic chip capacitors. Using this material, we successfully achieved low DF of ~0.002 at GHz frequencies up to 10GHz, higher dielectric strength and better TCC by optimizing size of the filler and controlling its distribution in the polymer matrix. This material can be applicable for the use either in discrete RF components or in being embedded within the packaging substrate as an embedded RF capacitor material.

Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Is There a Spacing Spec for SMD Components?
Maximum Board Temperature During Tin-Lead
Is HASL a Good Choice for Surface Finish?
Connector Bowing During Reflow Process
Has My Flux Expired?
Long Term Component Storage
Processing Circuit Boards with BGAs On Both Sides
What Causes Solder Balls During Hand Soldering?
MORE BOARD TALK
Ask the Experts
Mixing Different SAC305 Solders
Dross Particles Sticking to PCBs
Cleaning with Sodium Bicarbonate
Conformal Coating Over Heat Sinks
Flux Oozing from Insulated Wires
Conformal Coating in Low Humidity Environments
Tiny Solder Balls After Reflow
Solder Paste Alloy Check
MORE ASK THE EXPERTS