Research
Fill the Void II: An Investigation into Methods of Reducing Voiding
Wettable-Flanks On Bottom-Termination Components in Mass Production
Improved Flux Reliability of Lead-Free Solder Alloy Solder Paste
Investigation into Lead-Free Low Silver Solder Wire for Electronics
Effects of Composition and Isothermal Aging on Microstructure Performance
How Does Printed Solder Paste Volume Affect Solder Joint Reliability?
Wearable Electronics & Big Data = High Volume, High Mix SMT
Evaluation of Molded Flip-chip BGA Packages
MORE RESEARCH
Latest Industry News
MIT Turns 'Magic' Material Into Versatile Electronic Devices
U.S. Commerce Dept. presses Taiwan for more chips to automakers
Ford is betting that solid-state batteries will cut EV costs
How to Be a Role Model of Resilience
IoT and the circular economy
Embedded Vision at the Tipping Point
Dell lays out its plans for the future
Ford And Volkswagen Have Major Breakthrough On Self-Driving Cars
MORE INDUSTRY NEWS

Lower Temperature Solder Joint Encapsulant



Lower Temperature Solder Joint Encapsulant
The strength of solder joints is enhanced by several times, and thermal cycling performance is significantly improved.
Materials Tech

DOWNLOAD

Authored By:


Dr. Mary Liu and Dr. Wusheng Yin
YINCAE Advanced Materials, LLC
Albany, NY

Summary


The electronic industry is currently very interested in low temperature soldering processes such as using Sn/Bi alloy to improve process yield, eliminate the head-in-pillow effect, and enhance rework yield. However, Sn/Bi alloy is not strong enough to replace lead-free (SAC) and eutectic Sn/Pb alloys in most applications. In order to improve the strength of Sn/Bi solder joints, enhance mechanical performance, and improve reliability properties such as thermal cycling performance of soldered electronic devices, the company has developed a low temperature solder joint encapsulant for Sn/Bi soldering applications.

This low temperature solder joint encapsulant can be dipped, dispensed, or printed. After reflow with Sn/Bi solder paste or alloy, solder joint encapsulant encapsulates the solder joint. As a result, the strength of solder joints is enhanced by several times, and thermal cycling performance is significantly improved. All details will be discussed in this paper.

Conclusions


A new low temperature solder joint encapsulant adhesive, which is good for low temperature solders such as Sn/Bi has been successfully developed. Low temperature solder joint encapsulant solder paste has demonstrated excellent solder wetting and room temperature stability, which is good for mass production processes. Compared to using traditional Sn/Bi solder paste, using low temperature solder joint encapsulant dramatically improved drop test performance by over 10 times. There was no first failure observed before 1000 cycles, much better than the performance using Sn/Bi solder paste.

Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Cure for the Grape Effect
Removing Warpage from PCBAs
Solder Paste Inspection - When and Why
Predicting Mid-Chip Solder Balling
Will Typical No Clean Paste Pass an SIR Test?
How Do You Remove Oxidation from PCBs?
Consensus for Baking Prior to Rework?
How Many Fiducials Per Stencil
MORE BOARD TALK
Ask the Experts
Question About Dry Storage of PCBA's
Baking Concerns for Stacked Trays of Components
Two Year Component Date Code Mandate
Assembly Question for Soldering USB Connectors
Tough Hand Soldering Problem
Challenges with 01005 Components
What Is Causing Connectors to Bow?
Acceptability Standard for Plated Hole Barrel Fill
MORE ASK THE EXPERTS