circuit insight
Latest Industry News
Your Company's AI Strategy Is Probably Backwards. Here's Why — and How to Fix It.
Trump Administration Revokes Controversial AI Diffusion Rule
Balancing Work and Life: An Engineer’s Guide to Fulfillment
US-China trade war would not last
Apple eyes move to AI search
MORE INDUSTRY NEWS
Sponsor
Advanced-Interconnections

Introducing our new Board to Board Connectors
These new Board to Board Connectors feature pitch sizes from 0.50 mm to 1.00 mm with multi-pitch and custom pitch designs available. Designed for long-life applications and robust handling.
Advanced Interconnections Corp
Aim-Solder

Advanced Printing for Microelectronic Packaging



Advanced Printing for Microelectronic Packaging
Using micro-dispensing it is possible to print in 3D space a wide variety of materials including solders, epoxies, conductive adhesives and ceramic filled polymers.
Production Floor

DOWNLOAD

Authored By:


Kenneth H. Church, Xudong Chen, Joshua M. Goldfarb, Casey W. Perkowski, Samuel LeBlanc
nScrypt, Inc.
Orlando, FL USA

Summary


Using micro-dispensing with exceptional volume control it is possible to print in 3D space a wide variety of materials and including solders, epoxies, conductive adhesives and ceramic filled polymers. These can be used to build 3D structures and utilizing a 3D Printing approach which is also known as Computer Aided Design and Computer Aided Manufacturing (CAD/CAM).

The advanced technology enables 3D printing of electronics but it also enables smaller solder and adhesive dots; 75 microns and less. It is possible to place these on any package in 3D space. Demonstrations for this technology have shown that it is possible to print less than 50 micron wide lines and dots. Additionally a wide range of materials that will be required in future packaging can be dispensed.

These smaller features provide sub nanoliter volume. This is possible given the less than 100 picoliter volume control during dispensing and including highly viscous materials. Demonstrations of smaller printed dots and lines for electronic circuits and packaging will be shown. In addition, 3D circuitry that is 3D printed and contains no solder will also be shown, demonstrating the future of printed circuits.

Conclusions


Electronic packaging is becoming more complex given the amount of circuitry required in smaller volumes. This will require tighter tolerances in dispensing and in robotic control for placement. The micro-dispensing of dots and lines utilizing the company micro-dispenser has the ability to accurately place and control the volume of solders and epoxies.

This could be enabling for existing and future electronic products. Additionally, micro-dispensing was used to demonstrate 3D electrically functional structures. These devices perform like standard electronic boards, but do not require solder. The monolithic builds will be more rugged and as the technology matures this will also add more functions per volume since an additional dimension will be used more effectively.

Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Sponsor
Circuit-Technology-Center

Essential guide for hi-rel BGA re-balling
Re-balling of BGA's with tin-lead solder is required in some hi-rel applications due to tin whisker concerns. This white paper discusses the key considerations of this specialized process. Read more.
Circuit Technology Center
Ask the Experts
Stencil Cleaning Procedure
Bottom Terminated Components and Vias
Hand Soldering at Low Temperature
Low Operating Temperature Lead-Free Solder
Mixed Process Solder Joint Appearance, Smooth or Grainy?
ESD Grounding - 1 Meg Ohm Resistor
Stencil Pattern for LGA Power Pad
BGA Die and Pry Testing
MORE ASK THE EXPERTS
Master-Bond