Research
Impractical Stencil Aperture Designs to Enable M0201 Assembly
Effectiveness of I/O Stencil Aperture Modifications on BTC Void Reduction
Microalloyed Sn-Cu Pb-Free Solder for High Temp
Selective Reflow Rework Process
Impact of Thermal Loading on the Structural Intergrity of 3D TSV Package
Design and Fabrication of Ultra-Thin Flexible Substrate
Influence of PCB Surface Features on BGA Assembly Yield
Last Will and Testament of the BGA Void
MORE RESEARCH
Latest Industry News
Print These Electronic Circuits Directly Onto Skin
Compal increasingly asked to diversify production bases
Intel's margins tumble as customers shift to cheaper chips, shares slide 10%
From Foldable Phones to Stretchy Screens
6 Considerations for Integrating Sensors in Vehicles
Bill Gates Says Unhappy Customers Are Good for Your Business. Here's Why.
iPhone 12 review: Upgrade for the camera, not 5G
Apple's shifting supply chain creates boomtowns in rural Vietnam
MORE INDUSTRY NEWS

Optimizing Insulated Metal Substrate Application



Optimizing Insulated Metal Substrate Application
The growth in insulated metal substrates (IMS) in power electronics requires a focus on material and mechanical configuration for each application.
Materials Tech

DOWNLOAD

Authored By:


Dave Sommervold, Chris Parker, Steve Taylor, Garry Wexler
The Bergquist Company
Prescott, WI USA

Summary


The ever expanding growth in the use of insulated metal substrates (IMS) in power electronics requires a focus on material and mechanical configuration for each application. By optimizing the material makeup and printed board format, performance and reliability expectations can be further achieved. The thermal performance and electrical isolation needs are driven by the power requirements, but considerations of temperature range, mechanical durability and format, along with the physical package surrounding the substrate must also be managed.

With a variety of material configurations and circuit format capabilities, the choices become a balancing of options to maximize performance and minimizing cost through Design For Manufacturability (DFM) in the circuit board fabrication. These challenges present the IMS printed board fabricator with material selections and fabrication processes unlike those for other printed board or ceramic applications.


Conclusions


IMS substrates provide many advantages in power electronics and LED designs with the variety of material selections and circuit fabrication possibilities, examples shown in figure 5. The design does need to narrow down the choices of material configurations to meet performance and price requirements. Matching thermal performance, safety agency testing needs and best fabrication method can be greatly enhanced with a strong technical relationship with the material/fabricator vendor.

With the continued increases in power density and the exploding LED lightning market, more and more designers will have to look to IMS substrates for their applications needs. However the amount of differentiation from traditional FR-4 fabrication forces the need apply design practices not previously considered.

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Causes of Blowholes
Tips When Moving a Reflow Oven
Assembling Boards with BGAs on Both Sides
Larger Stencil Apertures and Type 4 Paste
5 vs 8-Zone Ovens
Component Moisture Question?
BGA Components and Coplanarity
How To Verify Cleanliness After Rework and Prior to Re-coating?
MORE BOARD TALK
Ask the Experts
Initial Screen Print Test Board
HASL Surface Finish and Coplanarity
Legend Marking Discoloration
Cleanliness Testing
Stencil Cleaning Frequency
Exposed Copper Risk
Spotting After DI Water Cleaning
ESD Grounding - 1 Meg Ohm Resistor
MORE ASK THE EXPERTS