Research
Implementing Robust Bead Probe Test Processes
Via-In Pad Plated Over (VIPPO) Design Considerations
Screening of Lower Melting Point Pb-Free Alloys
Condensation Testing - A New Approach
Case Study for Improving the PCB Print Process Using Factory Data
DFX on High Density Assemblies
Improved SMT and BLR of 0.35 mm Pitch Wafer Level Packages
Wetting and Solidification of Pure Tin on Polycrystalline Intermetallic Substrates
MORE RESEARCH
Latest Industry News
MacBook, iPad Production Delayed as Supply Crunch Hits Apple
Microsoft unveils liquid cooling solution for datacenters
A Theory of (Almost) Everything
Toyota unveils new models in advanced driver-assist technology push
Tech Giants Enter Their Chips in the Race for Self-driving Cars
What will self-driving trucks mean for truck drivers?
4 Great Things That Happened When We Went Remote
iPhone 13 is going to be worth the wait: All the major upgrades we're looking forward to
MORE INDUSTRY NEWS

Choosing the Right Stencil Options



Choosing the Right Stencil Options
Quality and yield are directly linked to the solder printing process. A constant paste depot is critical to a stable soldering process.
Production Floor

DOWNLOAD

Authored By:


Harald Grumm and Dominique Graupner
Christian Koenen GmbH - HighTech Stencils
Ottobrunn, Germany

Summary


Miniaturization, a growing need for more functionality and low production cost are the highest aims for electronic products, especially for mobile devices. The combination of these claims lead to complex substrates and production processes. Highly integrated components help to concentrate functionality on a very small footprint, bringing fine pitches and small connection pads / pins to the substrate (like QFN, MLF, iBGA).

Fine pitch and small pads increase the printing process standards. This can be countered with a thinner stencil thickness. But almost all electronic products also include components with a need for a high amount of solder volume (e.g. connectors, mechanical strained components, power components). This component mix demands a detailed set-up of the printing tool to be able to maintain a high yield at low production costs.

This document introduces stencil technologies, which address these claims and help to increase the first pass yield of your production line: Layout optimization directly addresses production process issues like tombstones, coplanarity, bridging, solder beading and voiding. Also processes like Through Hole Reflow (THR / PiP) or leadless components (OFN / MLF) should be designed regarding a detailed solder volume calculation.

Step Stencil Technology combines different stencil thicknesses into one stencil, allowing the correct solder volume for each component. Also this technology can be used to implement cavities into the substrate side of the stencil to overcome substrate issues like too high solder resist, too high via filling or plugging, labels or overtop clamping.

3-D-Stencils are capable to print simultaneously on different height levels of a substrate and extend the usability of stencils into new areas. PLASMA Stencils are coated with a high tech material to enhance paste release, reduce the need for cleaning and minimize the effect of line down times to volume transfer. By choosing the right combination out of the possible options you will be able to speed up your production, enhance your quality and yield.

Conclusions


Stencil technology is the key to establish a reliable and cost effective printing process. Efficiency and yield will increase together with the correct selection of layout and stencil options to meet the demands of the process. To select the right combination of options a good communication between production and stencil design is essential.

Initially Published in the SMTA Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Solder Paste Volume for BGA Rework
Reflow For Rigid Flex
Delay Before Cleaning Partial Assemblies
Problems With Starved "J" Lead Joints
Solder Paste Transfer Efficiency - What/Why
Can a CTE Mismatch Cause Reliability Problems?
Going Beyond Your Solder Paste Work Life
Issues Mixing Silicone and Acrylic Conformal Coatings
MORE BOARD TALK
Ask the Experts
Bottom Terminated Components and Vias
Is Solder Mask Considered an Insulator
Reduce Glare During Assembly
BGA BAll Sheer Testing
Components Jumping Around During Reflow
Floor Life of MSD Parts
QFN Open Solder Joints
Delamination Causing Scrap
MORE ASK THE EXPERTS