
Detect PCB Stack-up Error with Machine Learning Methods
Ta Chang Chen, Gold Circuit Electronics Ltd., Taoyuan, Taiwan

Fei Fei Kao PhD, Ming Chuan University, Taoyuan, Taiwan

Huang Yu Chen PhD, Taoyuan, Taiwan

Abstract

In manufacturing multilayer printed circuit boards (PCBs), the PCB layer stack-up usually includes multiple plies of various

types of prepreg along with the inner layer core material. Most of the layer stack-up process is manual operation relying on

an operator to place the correct type and quantity of prepreg at designated dielectric openings. Missing or adding additional

one or more plies of prepreg can result in a overall board thickness which will possibly still fall within its thickness

specification limits but, its electrical property will be greatly affected (e.g. impedance, loss etc.). In this case, this abnormal

board could possibly escape to customer unless detected by more expensive electrical property testing. Impedance

measurement may catch the missing / extra prepreg for the dielectric layers related to impedance. Other layers without

impedance control could still possibly escape. Considering impedance TDR measurement is time consuming and costly

measurement process, a new lower cost approach was developed to detect extra / missing prepreg and validate the correctness

of the stack-up. Our first approach is looking for statistical outliers for each given lot board thickness measurements after

lamination. This approach is able to detect extra / missing prepreg, but its false alarm is too high due to missing one ply

prepreg can be less than 0.002" thick which is generally less than one sigma of total board thickness. Thus, second approach

using machine learning technique was developed with board thickness data (known bad and known good board thickness)

and other features (e.g. prepreg type, lamination parameters etc.). From the model we developed and validated that our

escape rate is still 0% and its false alarm rate was reduced by 85%.

Introduction

Due to the development of high frequency and high-speed transmission in information industry, PCB customers demand

stricter signal transmission integrity of PCB. Therefore, the control of signal insertion loss becomes a new challenge to PCB

manufacturers. Energy is lost from a signal as heat in the conductor resistance and as heat in the dielectric caused by the

inherent material properties of the base material itself. Total loss is therefore the sum of conductor loss and dielectric where

such loss is undesired or at least needs to be understood and managed [1]. Insertion loss formulas are:

Where H represents dielectric thickness, represents dielectric constant and represents dielectric loss tangent. From the

formulas above, dielectric plays an important role of signal integrity. Nowadays, stack up process still lacks automation

solution in most PCB plants. Operators are required to follow each part number’s stack up requirement to prepare and place

correct quantity and type of prepreg at each dielectric opening. For higher layer counts design, the risk of stacking wrong

quantity of prepregs will increase as more prepreg required to manually placing. After lamination process, board thickness

will be 100% automatically measured, once an stack-up error board with extra or missing prepreg was produced, the board

thickness of this stack-up error board was possibly within thickness specification limits, since commonly used thin prepreg

thickness is around 1mil to 3mil, that’s quite small compared to total board thickness. The stack-up error board has a chance

to be detected at impedance measurement process after outer layer or solder mask process showing in Figure 1. Measuring

impedance and loss using TDR is a high cost and time-consuming method, if impedance and loss are sampling measurement,

a stack-up error board has high risk shipping to customer. Accordingly, our purpose is to establish an effective detection

method which can find out stack-up error boards with extra or missing prepreg right after lamination.

This paper and presentation “Detect PCB Stack-up Error with Machine Learning Methods” was first presented at the 2020 IPC Apex Expo Technical

Conference and published in the 2020 Technical Conference Proceedings.

As originally published in the SMTA Proceedings

Figure 1 – Process where stack-up error board has a chance to be detected

Detect PCB Stack-up Error with Traditional Statistical Methods

After lamination, every board will pass through automatic board thickness measurement equipment which contains 3 laser

displacement sensors in a row, and it will measure 3 rows (left, middle and right) of each board, that’s totally 9 points in a

board shown in Figure 2. In order to catch stack-up error boards, we drew a histogram first like left part of Figure 3. From the

histogram, all thickness measurement data were within specification limits and capability index Cpk of this lot equaled 2.3,

we couldn’t find any problem here. As mentioned previously, a stack-up error board with extra or missing prepreg will not

cause total board thickness out of specification limits in most situations, we can’t determine a board is a stack-up error board

by whether its board thickness is out of specification limits or not. And then we drew a box and whisker plot of board

thickness by board as right part of Figure 3. From this plot, we observed that one board had different board thickness

performance compared to other boards in the same lot. Can we detect stack-up error boards by using outliers of board

average thickness? This is another idea.

Figure 2 – Board thickness measurement positions of each board

Figure 3 – Box and whisker plot of board thickness of a lot grouping by board with a stack-up error board

The most commonly used statistical outlier detection methods are (1) box and whisker plot and (2) MAD (median absolute

deviation) test. In a box and whisker plot like Figure 4, the bottom of the box is 1st quartile (Q1) of the data and the top of the

box is 3rd quartile (Q3) of the data, and interquartile range (IQR) equals Q3 – Q1. If any data point is greater than Q3 +

1.5*IQR or less than Q1 – 1.5*IQR, this data point is an outlier.

Another method, MAD test, is an effective, non-graphical method of detecting outliers in a set of data. To determine if there

are outliers in a data set :

(1) Calculate , the median of the

(2) For each , calculate its absolute deviation from the median:

(3) Calculate MAD, the median of the absolute deviations from the median:

(4) For each , calculate

(5) The data point is an outlier if , meaning that the point is more than 3.5*σ away from the median.

We applied these 2 methods on 15 known bad boards to check if these 2 methods were able to detect all known bad

boards. The result is as Table 1. From the result, there were 6.7% and 13.3% escape rate (number of stack-up error board

was not detected/total number of stack-up error board), this was not good enough since zero escape rate was our goal.

Table 1 – Stack-up error board detection results using statistical outlier

Outlier detection method Number of total stack-up error board Number of escape board Escape rate

Box and whisker plot 15 1 6.7%

MAD Test 15 2 13.3%

Thus, a 3rd approach was developed to decrease escape rate. This method compared board thickness of each board to whole

lot board thickness performance. The analysis process is:

(1) Calculate median (denoted by M) of whole lot board thickness data represents the center of board thickness distribution

of this lot. Since average will be affected by outliers, we decided to use median to represent center of the lot board

thickness.

(2) Because of the property of lamination process, resin flow at the edge of the board is greater than center of the board. This

will result in board thickness in the center thicker than perimeter as shown as a contour plot like Figure 5, and thickness

distribution of a board will be affected by design pattern as well. Therefore, after a trial and error process, we calculate

mean of the ith board (denoted by) represents the center of one board thickness distribution, and calculate range of the

board (denoted by) to represent the uniformity of board thickness.

(3) Calculate , if is greater than the thinnest prepreg thickness of the designed stack up times 0.9 and

is less than board thickness specification times 0.15, then we will determine this board as a stack-up error board.

After we implemented this detection method online and total 540,000 boards were produced in this period of time, 510

boards were detected by this method as stack-up error boards. After performing 100% cross-section, 31 of 510 boards were

true defects with extra prepreg or missing prepreg, and 479 boards were false alarm. This new outlier detection method

detected stack-up error boards indeed (escape rate = 0%) but along with 94% (=479/510) false alarm rate. Obviously, this

method was unacceptable and still had room for improvement. Note that if we applied box and whisker plot and MAD test on

those data, the escape rates were 9.7% (=3/31) and 12.9% (=4/31).

Figure 4 – Definition of outliers in box and whisker plot

Detect PCB Stack-up Error with Machine Learning

The previous statistical methods used board thickness data only to detect stack-up error boards. To establish the stack-up

error board detection method, we chose 12 features which were in relation to board thickness including material, machine

and manufacturing method. Since we had 12 features and the data structure was not balanced (i.e., a balanced data structure

has an equal number of observations for all possible combinations of feature levels), it was not easy to build a prediction

model with statistical method. In the meantime, we found that if a problem contains following three essences, there will be an

opportunity to build a prediction model with machine learning.

.

Figure 5 – Contour plot of board thickness of a board

(1) Exists some ‘underlying pattern’ to be learned

(2) No easy programmable definition

(3) Data is available for this pattern

That’s the beginning we implement machine learning.

What is Machine Learning?

Machine learning is the scientific study of algorithms and statistical methods that computer systems use to perform a specific

task without using explicit instructions, relying on patterns and inference instead. Traditional programming looks like the top

half of Figure 6. Using data and rules to derive answer through developed program. These rules are expressed in a

programming language and are the bulk of any code that you write. Ultimately, these rules will act on the data and give you

an answer. If we don’t know the rules or the rules are too complex to code, and then it fails to let computer output answers

when we input data we collected. But what if you reverse this diagram, you give machine answers with the data and let the

machine figure out what the rules are, like the bottom half of Figure 6 [3]. That’s machine learning algorithm. In this article,

we will introduce how we use ensemble learning, a method of machine learning, to establish an expert determination system

to detect stack-up error board including four commonly used classifiers such as logistic regression, support vector machine,

random forests and extreme gradient boost. This expert system will combine the results of four classifiers and make a final

prediction that a board is a stack-up error board or not.

Feature Engineering

As noted above, 12 features which are in relation to board thickness after lamination list in Table 2. 8 of 12 features are

numerical data and the other 4 are categorical data. None of which contains missing value.

Figure 6 – Traditional programming and machine learning algorithm

Table 2 – Features List

For categorical data, most machine learning algorithms cannot deal with it, so we have to encode this type of data into

numbers before we train models. There are 2 commonly used encoders. The first one is label encoder, which assign a number

to a different category. For example, in the left part of Figure 7, 1 is the label for Red, 2 is the label for Black, 3 is the label

for Blue, and 4 is the label for Green. In this way, we can convert categorical data to numerical data easily. But a new

problem arose. Since there are different numbers in the same column, machine learning algorithms will misunderstand the

data to be in some kind of order like 1 < 2 < 3 < 4. But this isn’t the case at all. To overcome this problem, we use one-hot

encoder. One-hot encoder splits one column of categorical data into multiple columns, and each column includes only

numbers 1 and 0 that depends on which column has what value. For example, in the right part of Figure 7, we will get 4 new

columns, one for each color – Red, Black, Blue, and Green. For rows which have the original column value as Red, the Red

column will have value 1 and the other 3 columns will have value 0. Similarly, for rows which have the original column

value as Black, the Black column will have value 1 and the other 3 columns will have value 0. In this way, the Euclidean

distance between any 2 categories are the same.

For numerical data, some machine learning algorithms, e.g. support vector machine, are sensitive to the feature scales. If the

scale of one numerical feature is much greater than the other numerical feature, then it cannot train an effective model.

Therefore, each numerical feature will be standardized to eliminate difference of scale. Following equation shows how to

standardize data:

where is the original data, is the mean of the feature and is the standard deviation of the feature.

Figure 7 – Label encoder and one-hot encoder

Feature Data Type
Feature Engineering

Methods

Contain

Missing Value?

Average of Board Thickness (denoted by) Numeric Standardize No

Median of Lot Board Thickness (denoted by M) Numeric Standardize No

Numeric Standardize No

Board Thickness SPEC Numeric Standardize No

Thickness of Thinnest PP Numeric Standardize No

Resin Content of Thinnest PP Numeric Standardize No

Material Type Category One Hot Encoding No

Glass Type of Thinnest PP Category One Hot Encoding No

Board Length Numeric Standardize No

Board Width Numeric Standardize No

Lamination Program Category One Hot Encoding No

Lamination Machine Category One Hot Encoding No

Prediction Model Performance Indicators

Stack-up error is rarely happened, the defect rate of stack-up error is 57dppm (= 31/540,000×106). If we use accuracy as

model performance indicator, a classifier predicts all boards as good boards will have accuracy over 99.99%. This will

mislead us about thinking that this classifier performs excellently, but actually it’s not. Instead of using accuracy as model

performance indicator, escape rate and false alarm rate are better indicators, where

Settings of Output Class Number, Threshold and Voting Methods

For each row of data, we collected, we had performed cross-section examination to identify the “answer” of each board is

missing prepreg (value = –1), normal (value = 0) or extra prepreg (value = 1). The purpose of this project is detecting stack-

up error board no matter it is missing prepreg or with extra prepreg. Will the classifiers have lower escape rate and false

alarm rate if we simplified this question by setting the answer into 2 classes, normal (value = 0) and stack-up error (value =

1)? We will compare which setting is better later.

Next, when we input a set of data into classifier prediction models, each classifier will output probabilities of this board

belonging to missing prepreg, normal or with extra prepreg. For example, prediction result is like (0.01, 0.67, 0.32), it means

that this board belongs to missing prepreg with probability 0.01, belongs to normal with probability 0.67 and belongs to with

extra prepreg with probability 0.32. Usually, we will take the class with highest probability as our final result (normal board

in this case), but it is not the only way to determine which class this board belongs to. We can set a threshold, for example

0.15, and if any probability of missing prepreg or with extra prepreg is greater than threshold, whether the probability is the

greatest or not, we will determine this board as missing prepreg or with extra prepreg. If both probabilities of missing prepreg

and with extra prepreg are greater than threshold, we will choose the higher one. Decreasing threshold will have higher

chance to trigger stack-up error board, but along with higher false alarm rate as well. On the other hand, increasing threshold

will have lower chance to trigger stack-up error board and have lower false alarm rate as well. Adjusting threshold is a trade-

off between escape rate and false alarm rate, it depends on how much tolerance you have to escape rate and false alarm rate.

We will determine an appropriate threshold value in the later comparison.

The last item we are going to set is voting method. Voting is one of the methods to ensemble prediction results from several

classifiers. There are 2 commonly used voting methods, soft voting and hard voting. The soft voting averages the

probabilities of all classifiers first and then comparing the average probabilities with threshold to determine is the board

normal or not. In contrast to soft voting, hard voting determines whether this board is a stack-up error board by each classifier

first, and then makes the final prediction by a simple majority vote. We made a little change in this project: if any classifier

determined this board is a stack-up error board then we make a final prediction that this is a stack-up error board, any escape

is not allowed. Figure 8 is an example of soft voting and hard voting. After we input data into each classifier prediction

model, they will output predictive probabilities. The soft voting averages probabilities of each classifier first, and then we

have probability 0.02 that this board belongs to missing prepreg, probability 0.853 that this board is normal, and probability

0.127 that this board is with extra prepreg. Suppose threshold is 0.15 and none of probabilities of missing prepreg and with

extra prepreg is greater than threshold, it concludes this board is normal. For hard voting, logistic regression and random

forests determine this board is with extra prepreg since the probability of with extra prepreg is greater than 0.15. Support

vector machine and extreme gradient boost predict this board is normal, since both probabilities of missing prepreg and with

extra prepreg are less than threshold. Finally, it concludes this board is with extra prepreg. Different voting methods will

cause different results, we will decide which voting method is better in this project in the following comparison. To decide

appropriate output class number, threshold value and voting method, we will use collected dataset to build model in different

situation. At first, we sample 20% of the dataset randomly as test set, and the other 80% is train set. We use train set to build

4 ensemble prediction models with different output class number (2 and 3) and voting methods (soft voting and hard voting),

and then use test set to identify what is the maximum threshold value which will imply zero escape rates. The result is

showed in Figure 9, red dotted line is escape rate versus threshold and blue solid line is false alarm rate versus threshold.

Figure 8 – Example of Soft Voting and Hard Voting

The green circle in each plot means the maximum threshold with zero escape rate, higher maximum threshold with zero

escape rate means the model has higher confidence to detect stack-up error boards. From the result, hard voting with 3 output

classes had highest maximum threshold with zero escape rate (bottom right part of Figure 9). We did above process for 15

times and drew the result of maximum threshold value (denoted by T) with zero escape rate and false alarm rate when

threshold equals T in Figure 10 and Figure 11. In Figure 10, hard voting with 3 output classes always has larger threshold

than the other 3 settings, simultaneously, it had 2nd lowest false alarm rate among 4 settings. Based on this analysis, we set
output class number as 3 and ensemble results of four classifiers using hard voting. Usually, the trained model has a little bit

overfitting hence we take a conservative strategy to set threshold as 0.15.

Training Models

There are some hyperparameters that we have to set to avoid the model overfitting and underfitting in every classifier listed

in Table 2. Likewise, we split the dataset randomly into 2 groups, one with 80% amount of the data is train set and the other

20% is test set. We train a machine learning model with train set data, and then predict train set and test set using this model.

Next, we calculate the escape rate of train set and test set. A good model will have the lower escape rate in test set and similar

escape rate between train set and test set. The first condition means this model has good predictive capability and the second

condition means the model is not overfitting or underfitting. Keep doing this by setting different key hyperparameters values

to find an appropriate setting for every classifier. At last, the key hyperparameters setting of each classifier are listed in Table

3. Now, we are ready to train machine learning models use key hyperparameters setting listed in Table 2 and all dataset.

Figure 9 – One of the tests finding appropriate output class number, threshold and voting method

Figure 10 – 15 tests comparing maximum threshold with zero escape rate of different output class numbers and voting

methods

Figure 11 – 15 tests comparing false alarm rate when threshold equals maximum threshold with zero escape rate of different

output class numbers and voting methods

Table 3 – Key hyperparameters setting of every classifier

Classifier Key Hyperparameters

Logistic Regression max_iter = 1000, C = 10

Support Vector Machine max_iter = 2000, gamma = 0.1, C = 0.01

Random Forests n_estimators = 1000, max_depth = 20, max_features = ‘sqrt’

Extreme Gradient Boost n_estimators = 1000, learning_rate = 0.001, max_depth = 15

Effectiveness Validation

We implemented this model online to evaluate the effectiveness from May 2019 to July 2019. During this period of time, we

received 157 alarms from the 3rd statistical approach. After that, we predicted those boards with machine learning model and

then performed cross-section examination to identify the real status of those boards. Finally, the performance of machine

learning model was showed in a confusion matrix as Table 4.

Table 4 – Confusion matrix of evaluation results

Actual

Missing PP (-1) Normal (0) Extra PP (+1)

Predict

Missing PP (-1) 4 15 0

Normal (0) 0 123 0

Extra PP (+1) 0 10 5

Note: All 9 stack-up error boards are made intentionally to test system effectiveness

From this table,

where saving means we had to perform 157 cross-sections examination before implementing machine learning but reduced to

34 after implementing machine learning.

Summary

Although it’s not a great benefit in this case, we just used the data in our database originally and coded with a free open

source software Python to reduce waste in manufacturing environment. In the past few years, we’ve heard a lot of topics

about Industry 4.0 and smart manufacturing, and then we started to collect data online. Until now, I believe most of those

data are stored in database and have not been used well, this case showed us the benefits of correctly using these data. There

are lot of training programs and training materials on the internet and in real life, just get your foot in the door and follow the

guidelines as follows [2], machine learning is not unreachable.

(1) Frame the problem and look at the big picture.

(2) Get the data.

(3) Explore the data and get insights.

(4) Prepare the data to better expose the underlying data patterns to Machine Learning algorithms.

(5) Explore many different models and short-list the best ones.

(6) Fine-tune your models and combine them into a great solution.

(7) Present your solution.

(8) Launch, monitor and maintain your system.

Reference

[1] Polar Application Note AP8196 What is insertion loss? http://www.polarinstruments.com/support/si/AP8196.html

[2] Hands-On Machine Learning with Scikit-Learn & TensorFlow, Aurélien Géron

[3] Intro to Machine Learning, youtube channel TensorFlow https://www.youtube.com/watch?v=KNAWp2S3w94&t=238s

http://www.polarinstruments.com/support/si/AP8196.html
https://www.youtube.com/watch?v=KNAWp2S3w94&t=238s

	S28_01 - Ta Chang Chen.pdf
	Slide Number 1
	Background
	Board Thickness Measurement System
	Purpose
	Detect Outliers with Statistical Approaches
	Effectiveness of approach 1 and 2
	The 3rd Statistical Approach
	Example of the 3rd Statistical Approach
	Example of Stack-up Error Board
	Effectiveness of the 3rd Statistical Approach
	How to Improve Statistical Approach?
	When Can We Use Machine Learning?
	What’s Machine Learning?
	Preparation for Training Machine Learning Models
	Step 1: Select Machine Learning Algorithms
	Step 2: Prepare Input Data – Feature Engineering
	Step 3: Prepare Answer Data – Output Class Numbers
	Step 3: Prepare Answer Data – Threshold
	Step 3: Prepare Answer Data – Voting Methods
	Step 3: Prepare Answer Data – Voting Methods
	Model Performance Indicators
	Model Performance Simulation
	Model Performance Simulation
	Replication of Dataset Simulation
	Training Models
	Evaluation
	Summary
	Appendix
	Appendix I: MAD Test
	Appendix II: Categorical Data Encoder
	Appendix III: Numerical Data Encoder
	Appendix IV: Underfitting and Overfitting

