Early Design Review of Boundary Scan To Enhancing Testability
Fatigue and Shear Properties of High Reliable Solder Joints
Liquid Dispensed Thermal Materials for High Volume Manufacturing
Effect of Process Changes and Flux on Mid-Chip Solder Balling
Effect of Fine Lead-Free Solder Powder on the Reflow Property Pastes
Embedded Fibers Enhance Nano-Scale Interconnections
Electronic Packages and Modules Based on Embedded Die Technologies
3D Printed Electronics for Printed Circuit Structures
Latest Industry News
Foxconn to Shift Some Apple Production to Vietnam
GM Opens Up a New Front in Its Battle With Tesla: Batteries
Chinese handset vendors keenly building up inventory
Apple suppliers' exodus from China won't slow down under Biden
Exposing Apple Mini M1 SoC
Taiwan PC monitor shipments to drop in 4Q20, says Digitimes Research
The Best Smartphones
Autonomous Vehicle Software Analyzes and Predicts Driving Events

Impractical Stencil Aperture Designs to Enable M0201 Assembly

Impractical Stencil Aperture Designs to Enable M0201 Assembly
Implementation of metric 0201 or M0201 size surface mount passives will help enable the next generation form factor electronic packaging.
Production Floor


Authored By:

Jeff Schake and Mark Whitmore
ASM Assembly Systems
GA, USA, Weymouth, UK


Continued demand to miniaturize consumer electronic products compels the use of smaller components to satisfy more stringent assembled package dimensioning requirements. Along these lines, implementation of metric 0201 or M0201 size surface mount passives (the imperial designation is 008004) will help enable the next generation form factor electronic packaging. Upon further identification of the M0201 solder joint geometries that form acceptable attachment profiles to the bonding pads, it is realized their stencil printed paste volumes correlate to mere countable quantities of solder particles. A non-stepped stencil used to print all device pads on the board is expected to be at minimum 80µm foil thickness, which should still permit enough printed solder alloy to produce sufficient joints on larger component types contained in the assembly. However, this stencil thickness constraint obligates the utilization of traditionally hazardous aperture area ratios well below 0.5 for the M0201s. The results of the printing investigation discussed in this paper revealed unexpectedly stable and adequate paste transfer levels for demonstrated successful M0201 component assembly.


We have identified a specific challenging mobile product-like application containing M0201 component pads and imposed the restriction to use a minimum 80µm thickness non-stepped stencil foil to satisfy heterogeneous assembly. Upon exhausting more rational process options the direction of this research took a surprising path to pursue investigation of stencil printing tiny stencil aperture dimensions largely considered impossible to print. This work featured using stencil apertures designed below an area ratio value of 0.4 that were demonstrated to provide appropriate solder volume accommodating successful assembly of M0201 capacitor components in a highly controlled limited batch assembly process. While this success is ground breaking insofar as implementing critically low area ratio apertures, the practical use of such stencil designs in formal manufacturing processes is still highly discouraged. Further assembly investigation utilizing critically low aperture area ratios should include more rigorous validation testing with scope to capture process boundary conditions.

Interest in pushing the limits of stencil printing is expected to grow as miniaturization continues to evolve and expand. As we’ve learned from this work, such demands oblige exploration of all (even counter intuitive) options, including reconsideration of best working practice guidelines (i.e., stencil aperture design) leading to either reinforce the recognized rules or realize new process capability potential.

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Modify Rework Procedures for Assemblies Fabricated Using OSP?
What Causes Solder Icicles During Wave Soldering
Review of Tin-Copper and Tin-Nickel Intermetallic Thickness
Can High Particle Concentrations Impact PCB Assembly?
Trouble With Skewed DPAK Components
Moisture Barrier Bag Issues
How to Reduce Voiding on QFN Components
Can Mixing Wave Solder Pallets Cause Contamination?
Ask the Experts
Reflow Oven Calibration Schedule
Insufficient Plated Hole Fill with Electrolytic Capacitors
Through Hole Connector Solder Joint Hole Fill
Selective Solder System Purchased At Auction
Out-gassing and Cleaning
Stencil Cleaning Procedure
Challenging Cleaning Problem
Selective Printing for BGA Components