Stencil Printing Yield Improvements
Overcome Nodules and Scratches on Wire Bondable Plating on PCBs
Solder Paste Selection for Bottom Termination Components Attach
Jetting Solder Paste Opens Up New Possibilities
Advances Autonomous Driving V2X Technologies
Surface Insulation Resistance of No-Clean Flux Residues
Jetting Conductive Adhesives with Silver Coated Polymer Particles
Residues on Probing PCBAS-Consistent Connections Across No-Clean Fluxes
Latest Industry News
The Exodus Of Chinese Manufacturing
Autonomous Vehicles in China
How Much Gold Is in Your Computer and How Efficient It Is to Reclaim It
All must come aboard for a smooth ride to a carbon-neutral future
Memory Technologies Confront Edge AI's Diverse Challenges
How to Make Big Decisions When Facing an Unpredictable Future
Gartner Says Worldwide Robotic Process Automation Software Revenue to Reach Nearly $2 Billion in 2021
China rolls out fresh policies to boost hydrogen vehicle sales

Additive Manufacturing-Enabled Wireless Flexible Hybrid Electronics

Additive Manufacturing-Enabled Wireless Flexible Hybrid Electronics
This paper reports an ensemble of strategies for the successful miniaturization of EEG in a fully-flexible, wearable and wireless platform.
Analysis Lab


Authored By:

Musa Mahmood, Saswat Mishra
George W. Woodruff School of Mechanical Engineering, Institute for Electronics and
Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332

Woon-Hong Yeo
Petit Institute for Bioengineering and Biosciences, Center for Flexible Electronics,
Bioengineering Program, Neural Engineering Center, Institute for Materials, Georgia Institute of
Technology, Atlanta, Georgia 30332


Inherent variation among human brains causes difficulty in the design of electroencephalography (EEG)-enabled universal brain-machine interfaces (BMI). Existing EEG systems suffer from inconsistent signal quality, while requiring many rigid wires and metal electrodes on a hair cap. Although recent machine learning techniques offer a simpler EEG arrangement with fewer electrodes, these EEG devices still involve intrusive and heavy headgear, equipped with separate non-portable electrical hardware. Here, we introduce a fully portable, wireless, flexible hybrid system on a soft elastomeric membrane, which represents an ergonomic, comfortable, long-term wearable BMI. Additive manufacturing, based on aerosol jet printing, fabricates an ultrathin, open mesh electrode that can be mounted on the skin for biopotential recording, while a wireless electronic circuit is manufactured by the combination of material transfer printing and hard-soft materials integration.

These imperceptible soft electronics incorporates a nanomembrane electrode on non-hair-bearing skin, flexible electrodes on hair-bearing scalp, and flexible circuit on the neck for wireless data acquisition. Analytical and computational studies of materials and mechanics establish the fundamental design criteria of the flexible, skin-like hybrid electronics (SHE), which enables seamless, portable EEG recording with significantly enhanced signal quality over commercial systems. With six human participants, this portable system achieves the most efficient information transfer rate (111.75 ± 1.15 bits per minute per channel). An in vivo demonstration of the SHE-enabled BMI shows precise, low-latency control of a wireless wheelchair via two-channel EEG.


Collectively, this paper reports an ensemble of strategies for the successful miniaturization of EEG in a fully-flexible, wearable and wireless platform. Such a device can improve many rehabilitation and therapeutic applications for patients and physicians. Future study would focus on addition of fully elastomeric, wireless self-adhesive electrodes that can be mounted on the hairy scalp with integrated electronics toward motor imagery applications and another long-term EEG study.

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Solder Pallets With Titanium Inserts - Yes/No?
What Rate is World Class for SMT Machines?
Selective Solder Pot Temperatures
Top Side Reflow Causing Solder Balls
Trends for Printing Ultra Miniature Chips
Should We Measure Solder Paste Thickness?
Cleaning R.F. Circuits - Aqueous or Vapor?
Why Should We Consider Smart Feeders?
Ask the Experts
Problems With Large Voids
Stainless Steel Benches and ESD
Exposed Copper Defect
What's Causing Cloudy Conformal Coating
Channels To Reduce Voids in Large Pads
Options for Reballing BGA Components
Aluminum Trays and Rapid Static Discharge
BGA Solder Ball Shelf Life