Backward Compatible Solder Joint Reliability Under Accelerated Conditions
PBGA Solder Stress Analyses Under Random Vibration
Engineered Flux for Low Temperature Solders
Counterfeit Electronics Component Conundrum with Smart Labeling
Requirements on a Class 0 EPA - ESD Equipment and Measurements
Improved Reliability of Jet Dispensable Polymeric Coating Material
Position Accuracy Machines for Selective Soldering Fine Pitch
The Quantitative Assessment of Mixed BGA Joint
Latest Industry News
U.S. doubles down on protecting university research from China
EDITORIAL: The economy is at a turning point
EVs to be assembled like smartphones: Hon Hai
Apple had a blowout quarter in China. But can its success there continue?
Why Apple may never catch Microsoft in TV
Tech Check: The Apple Store's secrets, the Web goes .XXX
Autonomous vehicles could be vulnerable to attacks
Why We’re in the Midst of a Global Semiconductor Shortage

Strain Measuring Technology in Board Level Assembly Process

Strain Measuring Technology in Board Level Assembly Process
The study on strain measurement has just started, and there are still many unsolved puzzles, whether about strain gage selection or about measurement methodology.
Analysis Lab


Authored By:

Yabing Zou, Daojun Luo, Weiming Li
China Electronic Product Reliability and Environmental Testing Institute
Guangzhou, China


The board level assembly technology which contains soldering and assembling is the key link in the manufacture of electronic products. The quality and reliability of board level assembly process directly affects the quality and reliability of the whole products. This has to consider the impact of the strain on the soldering and assembling process. With the high density package and assembly prevails, and the materials at the transformation of environmental protection laws and regulations, the strain-induced damages in board level assembly process are frequent.

It is well known that the excessive strain can result in various failure modes for different package types, surface finishes, or laminate materials. Such failures include solder joint cracking, trace damage, laminate related adhesive failure (pad lifting) or cohesive failure (pad crater) and substrate cracking. Therefore, characterization of PCBA strain in worst-case is critical to the reliability assurance for electronic products. The application of strain gage test had been improved to be one favorable and effective method to discriminate the hazardous process.

Based on the conversion principle between strain and resistance change, strain gage test is a kind of effective measuring technology, which can be used in the fields such as theoretical verification, quality inspection and scientific research. However, the study on strain measurement for PCBAs in electronic industry has just started, and there are still many unsolved puzzles, whether about strain gage selection or about measurement methodology. To address these problems, this study conducted a deep analysis of the basic principle for strain gage test technology combining with strain-induced damage phenomena of PCBAs. Then the strain gage test was applied to PCBA reliability evaluation during a typical mechanical assembly process. And systematic analysis for some critical problems during this process was conducted, such as the strain gage selection technology, specific operation method and strain data analysis method.


PCBAs and components deformation control using strain gage measurement is proven beneficial to the electronic assembly industry, which can be used as a method to identify and improve manufacturing operations that may pose a high risk for interconnect damage.

This article studied on the application of strain measuring technology in PCBA reliability evaluation, such as the strain gage selection technology for PCBA, specific operation method of strain gage tests during PCBA assembly process and strain data analysis method. Accordingly, electronic process related technical personnel can quickly and reliably establish related evaluation scheme, and continue to identify and control the risky PCBA manufacturing process.

The study on strain measurement for lead-free PCBAs in electronic industry has just started and there are still many unsolved puzzles. Facing to this new and challenging research field, there are many more to explore for PCBA strain/stress damage mechanism and evaluation method.

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Issues With Fillets on Via Holes?
Solder Paste Beyond The Shelf Life?
Suggested Stencil Wipe Frequency?
Can Tape Residue Contaminate a Clean Tank?
When To Use Adhesive To Bond SMT Components
Reflow Oven Zone Separation Challenges
PCBA Inspection Concerns
How To Clean a Vintage Circuit Board Assembly?
Ask the Experts
How to Remove Oxidization from SMT Component Leads?
Cause of Green/Blue Oxide Buildup
Rework of Underfilled Array Packages
Acceptable Conductor Repair
Class 3 Cleaning Requirements
Cleaning No-Clean Solder Paste
Concerns With Silver Finish Component Leads
BGA Component Cleaning Spec