Research
Evaluating Manual and Automated Heat Sink Assembly
Bending Strength of Solder Joints as a Function of Joint Length
Effect of Bi Content on Properties of Low Silver SAC Solders
Rigid-Flex PCB Right the First Time - Without Paper Dolls
Effect of Thermal Cycling on Subsequent Drop Behavior of Assemblies
High and Matched Refractive Index Liquid Adhesives for Optical Device
Stencil Design for Ultra Fine Pitch Printing
Electroplated Copper Filling of Through Hole Influence of Hole Geometry
MORE RESEARCH
Latest Industry News
Hon Hai's US Plant Wins Google Server Contract
Can Detroit Catch Tesla?
Xiaomi's revenue growth spikes after Huawei slide
Samsung takes one-third of global TV market in Q3
Conversational Commerce Is Revolutionizing Ecommerce
MIT Project Helps ALS Patients Communicate Using Sensors
Turning the Body Into a Wire
iPhone 12 Pro Max Teardown
MORE INDUSTRY NEWS

Selecting Stencil Technologies to Optimize Print Performance



Selecting Stencil Technologies to Optimize Print Performance
Research has been done to identify individual factors in stencil performance; this paper discusses the real-world application of numerous findings.
Production Floor

DOWNLOAD

Authored By:


Chrys Shea
Shea Engineering Services
Burlington, NJ USA

Summary


The SMT stencil is a key factor in the solder paste printing process. It has been shown repeatedly that print quality has the largest impact on end-of-line quality, and a good print process can make or break the profitability of building a PCB assembly. A good print process relies on a good stencil.

Much research has been performed to identify individual key factors in stencil performance; this paper and presentation discuss the real-world application of numerous findings. They review the numerous considerations in design, material, manufacturing and coating considerations, and how to best choose them based on PCB layout.

Conclusions


Optimizing stencil performance based on a PCB layout is a straightforward process, but requires a number of decisions based on the features of the layout. The first, and most critical, choice is on foil thickness. Typical SMT processes use 5mil (125um) foils, but some components require larger deposits that drive thicker foils and some require smaller, more precise deposits that require thinner foils. The stencil designer needs to make sure the foil thickness and aperture sizes do not violate area ratio rules, and stencil design analysis software speeds the calculation process while preventing errors.

Sometimes foils must be stepped to accommodate multiple thicknesses. Stepping guidelines are available to help insure the best possible print quality; if the guidelines are compromised, the print quality is likely to suffer. Steps of 1mil or less may be addressed by using an incremental-size nickel foil; steps or 2mil or greater should use Fine Grain SS. Other considerations for using Fine Grain SS include foil thicknesses of 5mil (125um) or less, devices with pitches of 20mil (0.5mm) or less, high density or highly miniaturized layouts, or area ratios less than 0.66.

Secondary processes like nickel plating over SS or electropolishing have not recently been shown to improve overall print performance and typically should not be a factor in stencil design or manufacturing decisions. Rather, the cut quality that a supplier is capable of providing should be a larger consideration. The smoother walls created by the combination of specialized SS and modern laser cutters have shown to produce the best print quality in successive tests, consistently outperforming every other stencil fabrication technology available. The finer the feature, the more important cut quality becomes - 1206s are more forgiving than 0201s; as are QFPs compared to QFNs. If secondary processes are employed, users should understand why they are required and what specific impact they have on the process.

Nanocoatings improve quality and cost by keeping the PCB side of the stencil clean, reducing underwipe frequency and improving print definition. They can positively impact any solder paste printing process, regardless of PCB layout.

Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Review of Tin-Copper and Tin-Nickel Intermetallic Thickness
Can High Particle Concentrations Impact PCB Assembly?
Trouble With Skewed DPAK Components
Moisture Barrier Bag Issues
How to Reduce Voiding on QFN Components
Can Mixing Wave Solder Pallets Cause Contamination?
Do BGA Components Warp During Reflow?
Calculating Failure Rate During Rework
MORE BOARD TALK
Ask the Experts
Insufficient Plated Hole Fill with Electrolytic Capacitors
Through Hole Connector Solder Joint Hole Fill
Selective Solder System Purchased At Auction
Out-gassing and Cleaning
Stencil Cleaning Procedure
Challenging Cleaning Problem
Selective Printing for BGA Components
BGA Joint Voids - Accept or Reject?
MORE ASK THE EXPERTS