Research
Copper Electrodeposition By Hydrogen Evolution Assisted Electroplacing
Fabriciton of NiCo Alloy and Rh Coating Using Electroplating Method
Reliability of New SAC-Bi Solder Alloys in Thermal Cycling with Aging
Plasma Polymerization
Protocol Development for Testing Solder Reliability
Insulation Resistance of Dielectric Materials
QFN I/O Pad Solder Paste Overprint on Thermal Pad Void Reduction
Cavity Board SMT Assembly Challenges
MORE RESEARCH
Latest Industry News
Designing Customized 'Brains' for Robots
VIEWPOINT 2021: Mr. Daisuke Yoshihara, General Sales Manager, Yamaha Motor Europe IM Business
VIEWPOINT 2021: Justin Cody Worden, Director of Business Development, Austin American Technology
Hon Hai's new AI algorithm cuts inspection manpower at plants
FAA Files Reveal a Surprising Threat to Airline Safety: the U.S. Military's GPS Tests
CES 2021: FEMA's Emergency Alert System Coming to a Game or Gadget Near You?
It's Time to Look at FD-SOI (Again)
Finding the Cause of Cold Solder Joints
MORE INDUSTRY NEWS

Evaluating Manual and Automated Heat Sink Assembly



Evaluating Manual and Automated Heat Sink Assembly
This paper illustrates the use of strain gauge testing and Finite Element Analysis as a simulation tool to optimize the heat sink assembly process.
Production Floor

DOWNLOAD

Authored By:


Michael Randy Sumalinog
AEG-Asia, Flextronics Manufacturing Co.
Guangdong, Zhuhai, China

Jesus Tan, Murad Kurwa
AEG, Flextronics International Inc.
Milpitas, CA, USA

Summary


Proper assembly of components is critical in the manufacturing industry as it affects functionality and reliability. In a heat sink assembly, a detailed manual process is often utilized. However, an automated fixture is used whenever applicable. This paper will illustrate the use of strain gauge testing and Finite Element Analysis (FEA) as a simulation tool to evaluate and optimize the heat sink assembly process by manual and automated methods.

Several PCBAs in the production line were subjected to the manual and automated assembly process. Strain gauge testing was performed and FEA models were built and run. Results were compared with the goal of improving the FEA model. The updated FEA model will be used in simulating different conditions in assembly. Proposed improvement solutions to some issues can also be verified through FEA.

Conclusions


The finite element models for FEA of a heat sink assembly by manual and automated processes have been presented in this paper. Based on results, automated assembly is preferred than the manual assembly process. The results of the analysis were compared to experimental data gathered through strain gauge testing. After several iterations, the differences between experimental and numerical results were reduced and trends were noted to achieve optimized FE models. These FE models can be used to perform other studies to improve strain values and avoid damaging board flexure. One such factor is the location of the BGAs on the printed circuit board.

Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Finding the Cause of Cold Solder Joints
Sticky Residue Under Low Clearance Parts
Printing vs. Dispensing
Soldering Relays Intrusively in Lead Free Process
Is There a Spacing Spec for SMD Components?
Maximum Board Temperature During Tin-Lead
Is HASL a Good Choice for Surface Finish?
Connector Bowing During Reflow Process
MORE BOARD TALK
Ask the Experts
Insufficient Barrel Fill on Through-hole Components
Package-on-Package Rework
Toe Fillet Requirements on Gull Wing Components
Gold Plating and Embrittlement
Soldering Multilayer Ceramic Chip Capacitors
Mixing Different SAC305 Solders
Dross Particles Sticking to PCBs
Cleaning with Sodium Bicarbonate
MORE ASK THE EXPERTS