Research
Stencil Printing Yield Improvements
Overcome Nodules and Scratches on Wire Bondable Plating on PCBs
Solder Paste Selection for Bottom Termination Components Attach
Jetting Solder Paste Opens Up New Possibilities
Advances Autonomous Driving V2X Technologies
Surface Insulation Resistance of No-Clean Flux Residues
Jetting Conductive Adhesives with Silver Coated Polymer Particles
Residues on Probing PCBAS-Consistent Connections Across No-Clean Fluxes
MORE RESEARCH
Latest Industry News
The Exodus Of Chinese Manufacturing
Autonomous Vehicles in China
How Much Gold Is in Your Computer and How Efficient It Is to Reclaim It
All must come aboard for a smooth ride to a carbon-neutral future
Memory Technologies Confront Edge AI's Diverse Challenges
How to Make Big Decisions When Facing an Unpredictable Future
Gartner Says Worldwide Robotic Process Automation Software Revenue to Reach Nearly $2 Billion in 2021
China rolls out fresh policies to boost hydrogen vehicle sales
MORE INDUSTRY NEWS

Evaluating Manual and Automated Heat Sink Assembly



Evaluating Manual and Automated Heat Sink Assembly
This paper illustrates the use of strain gauge testing and Finite Element Analysis as a simulation tool to optimize the heat sink assembly process.
Production Floor

DOWNLOAD

Authored By:


Michael Randy Sumalinog
AEG-Asia, Flextronics Manufacturing Co.
Guangdong, Zhuhai, China

Jesus Tan, Murad Kurwa
AEG, Flextronics International Inc.
Milpitas, CA, USA

Summary


Proper assembly of components is critical in the manufacturing industry as it affects functionality and reliability. In a heat sink assembly, a detailed manual process is often utilized. However, an automated fixture is used whenever applicable. This paper will illustrate the use of strain gauge testing and Finite Element Analysis (FEA) as a simulation tool to evaluate and optimize the heat sink assembly process by manual and automated methods.

Several PCBAs in the production line were subjected to the manual and automated assembly process. Strain gauge testing was performed and FEA models were built and run. Results were compared with the goal of improving the FEA model. The updated FEA model will be used in simulating different conditions in assembly. Proposed improvement solutions to some issues can also be verified through FEA.

Conclusions


The finite element models for FEA of a heat sink assembly by manual and automated processes have been presented in this paper. Based on results, automated assembly is preferred than the manual assembly process. The results of the analysis were compared to experimental data gathered through strain gauge testing. After several iterations, the differences between experimental and numerical results were reduced and trends were noted to achieve optimized FE models. These FE models can be used to perform other studies to improve strain values and avoid damaging board flexure. One such factor is the location of the BGAs on the printed circuit board.

Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Solder Pallets With Titanium Inserts - Yes/No?
What Rate is World Class for SMT Machines?
Selective Solder Pot Temperatures
Top Side Reflow Causing Solder Balls
Trends for Printing Ultra Miniature Chips
Should We Measure Solder Paste Thickness?
Cleaning R.F. Circuits - Aqueous or Vapor?
Why Should We Consider Smart Feeders?
MORE BOARD TALK
Ask the Experts
BGA reballing question
Conformal Coating Press Fit Connectors
Dust contamination after selective soldering
Moisture Sensitivity Level for Bare Boards
Contamination Using Solvent Dispensers
Challenges Placing RF Shields During SMT Assembly
Seeking Advise for a Solder Reflow Recipe
Critical Part Fixture During Reflow
MORE ASK THE EXPERTS