Research
Implementing Robust Bead Probe Test Processes
Via-In Pad Plated Over (VIPPO) Design Considerations
Screening of Lower Melting Point Pb-Free Alloys
Condensation Testing - A New Approach
Case Study for Improving the PCB Print Process Using Factory Data
DFX on High Density Assemblies
Improved SMT and BLR of 0.35 mm Pitch Wafer Level Packages
Wetting and Solidification of Pure Tin on Polycrystalline Intermetallic Substrates
MORE RESEARCH
Latest Industry News
MacBook, iPad Production Delayed as Supply Crunch Hits Apple
Microsoft unveils liquid cooling solution for datacenters
A Theory of (Almost) Everything
Toyota unveils new models in advanced driver-assist technology push
Tech Giants Enter Their Chips in the Race for Self-driving Cars
What will self-driving trucks mean for truck drivers?
4 Great Things That Happened When We Went Remote
iPhone 13 is going to be worth the wait: All the major upgrades we're looking forward to
MORE INDUSTRY NEWS

Implementing Robust Bead Probe Test Processes



Implementing Robust Bead Probe Test Processes
This paper defines a process window for the implementation of bead probe and similar bump technology that is compatible with standard Pb-free assembly.
Production Floor

DOWNLOAD

Authored By:


John McMahon P.Eng, Tom Blaszczyk, Peter Barber,
Celestica, Toronto, Ontario, Canada

Summary


Increasing system integration and component densities continue to significantly reduce the opportunity to access nets using standard test points. Over time the size of test points has been drastically reduced (as small as 0.5 mm in diameter) but current product design parameters have created space and access limitations that remove even the option for these test points. Many high speed signal lines have now been restricted to inner layers only. Where surface traces are still available for access, bead probe technology is an option that reduces test point space requirements as well as their effects on high speed nets and distributes mechanical loading away from BGA footprints enabling test access and reducing the risk of mechanical defects associated with the concentration of ICT spring forces under BGA devices.

Building on Celestica's previous work characterizing contact resistance associated with Pr-free compatible surface finishes and process chemistry; this paper will describe experimentation to define a robust process window for the implementation of bead probe and similar bump technology that is compatible with standard Pb-free assembly processes. Test Vehicle assembly process, test methods and "Design of Experiments" will be described. Bead Probe formation and deformation under use will also be presented along with selected results.

Conclusions


The experimental results demonstrate that Bead Probe technology when combined with the process and implementation approach developed here provides a viable option to removing traditional test points while still providing access. Furthermore, this implementation of BPT does not necessitate increased probe spring forces to match standard probe contact resistance performance.

Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Solder Paste Volume for BGA Rework
Reflow For Rigid Flex
Delay Before Cleaning Partial Assemblies
Problems With Starved "J" Lead Joints
Solder Paste Transfer Efficiency - What/Why
Can a CTE Mismatch Cause Reliability Problems?
Going Beyond Your Solder Paste Work Life
Issues Mixing Silicone and Acrylic Conformal Coatings
MORE BOARD TALK
Ask the Experts
Bottom Terminated Components and Vias
Is Solder Mask Considered an Insulator
Reduce Glare During Assembly
BGA BAll Sheer Testing
Components Jumping Around During Reflow
Floor Life of MSD Parts
QFN Open Solder Joints
Delamination Causing Scrap
MORE ASK THE EXPERTS