Research
Impractical Stencil Aperture Designs to Enable M0201 Assembly
Effectiveness of I/O Stencil Aperture Modifications on BTC Void Reduction
Microalloyed Sn-Cu Pb-Free Solder for High Temp
Selective Reflow Rework Process
Impact of Thermal Loading on the Structural Intergrity of 3D TSV Package
Design and Fabrication of Ultra-Thin Flexible Substrate
Influence of PCB Surface Features on BGA Assembly Yield
Last Will and Testament of the BGA Void
MORE RESEARCH
Latest Industry News
Print These Electronic Circuits Directly Onto Skin
Compal increasingly asked to diversify production bases
Intel's margins tumble as customers shift to cheaper chips, shares slide 10%
From Foldable Phones to Stretchy Screens
6 Considerations for Integrating Sensors in Vehicles
Bill Gates Says Unhappy Customers Are Good for Your Business. Here's Why.
iPhone 12 review: Upgrade for the camera, not 5G
Apple's shifting supply chain creates boomtowns in rural Vietnam
MORE INDUSTRY NEWS

Tools and Techniques for Material Assessment in Advanced Technologies



Tools and Techniques for Material Assessment in Advanced Technologies
Paper identifies limitations in the methods used for evaluating solders, circuit board materials and surface finishes.
Materials Tech

DOWNLOAD

Authored By:


Martin Anselm, Ph.D., and Wayne Jones
Universal Instruments Corporation
Advanced Process Laboratory
Conklin, NY, USA


Summary


As complexity in advanced manufacturing increases, especially for consumer electronics, the need to characterize the materials and processes used in electronic assembly also increases. OEM and EMS companies look to perform characterizations as early as possible in the process to be able to limit quality related issues and improve both assembly yields and ultimate device reliability. Many analytical methods are available to us on the market that each has their own risks and benefits.

This paper will help identify some of these key limitations in the methods used for characterizing and evaluating solders, circuit board materials and surface finishes available in the market today.

Conclusions


This paper simply discusses a small fraction of the techniques available to engineers tasked with material assessment. The intent of this discussion was to illustrate the methodology, benefits, and limitations of critical techniques that an engineer may utilize in determining the root cause of a failure. Moreover, any technique used by an engineer has its limitations and requires consideration.

Cost of failure misinterpretation and delay is astronomical and is the cause of significant waste in time and money in an electronics manufacturing factory. With some simple analytical techniques, isolation of the failure and determination of the root cause may be possible. In order to accomplish "root cause" the data collected from analytical techniques discussed in this paper (and others) must be combined with knowledge and experience. Only then can production and field failures be effectively limited and controlled.

Initially Published in the SMTA Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Causes of Blowholes
Tips When Moving a Reflow Oven
Assembling Boards with BGAs on Both Sides
Larger Stencil Apertures and Type 4 Paste
5 vs 8-Zone Ovens
Component Moisture Question?
BGA Components and Coplanarity
How To Verify Cleanliness After Rework and Prior to Re-coating?
MORE BOARD TALK
Ask the Experts
Initial Screen Print Test Board
HASL Surface Finish and Coplanarity
Legend Marking Discoloration
Cleanliness Testing
Stencil Cleaning Frequency
Exposed Copper Risk
Spotting After DI Water Cleaning
ESD Grounding - 1 Meg Ohm Resistor
MORE ASK THE EXPERTS