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Abstract

Pockets of gas, or voids, trapped in the solder interface between discrete power management devices and circuit assemblies
are, unfortunately, excellent insulators, or barriers to thermal conductivity. This resistance to heat flow reduces the electrical
efficiency of these devices, reducing battery life and expected functional life time of electronic assemblies. There is also a
corresponding increase in current density (as the area for current conduction is reduced) that generates additional heat, further
leading to performance degradation.

This paper will describe the results of a series of experiments performed in an in-line convection reflow oven, using a typical
lead free reflow profile, with three types of bottom terminated components commonly used in power management
applications. A solder paste flux and alloy with a known high level of voiding was used as the control. This solder alloy is of
unique interest, despite its voiding in ambient reflow conditions, as it has shown superior resistance to failure under
automotive thermal cycling conditions (-40C to +125C) and vibration.

The experimental design was comprised of two levels of vacuum (5 and 20 torr) applied at two levels of time (30 seconds and
60 seconds) while the test assemblies were at or above the liquidus temperature of the lead free solder alloy. Each 2 x
2 factorial was performed on identical printed circuit boards with four (4) different substrate surface finishes,
including Immersion silver, Immersion tin, ENIG (Electroless nickel, Immersion gold) and an Organic Solder Preservative
(OSP) finish used. Each condition was repeated three times and three controls with no vacuum were also processed for
each surface finish. Therefore, a total of 60 component/substrate samples were processed and subsequently examined for
voiding using X-ray analysis.

The results of this study indicate that the vacuum pressure, time under vacuum and the surface finish have little effect on the
results when vacuum reflow is utilized. The use of a low pressure vacuum when the solder alloy is in liquidus conclusively
results in a significant reduction of observable voids in each combination of surface finish and reflow process condition.

Introduction
Studies to examine void reduction in lead-free Ball Grid Array (BGA) and Bottom Terminated Components (BTC) have been
reported for several years [1-5]. BGA voiding has been shown to be an easier problem to solve, using two basic techniques in
a conventional reflow oven. These have shown to be effective in dozens of field application case histories in reducing BGA
voiding. First, using a soak reflow profile typically reduces BGA voiding to acceptable levels versus a straight ramp profile.
(Figures 1-3)
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Figure 1- Effect of Reflow Profile on BGA
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Figure 2- Straight Ramp Reflow Profile
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Figure 3- Soak ReflowProfile

The second reflow profile recommendation is to minimize the peak temperature since entrapped vapors will expand with
increasing temperatures. X-ray videos have demonstrated this assertion is valid and does indeed promote BGA void
reduction. Another effective method for reducing BGA voiding is to minimize the volume of solder paste deposited, thereby
reducing the ratio of flux to metal in the BGA sphere/solder paste joint. Stencil design is the key to paste volume reduction.

BTC voiding is not as readily reduced with the same techniques. Video studies have shown that the time above liquidus can
greatly reduce voids since the gas bubbles in the liquid solder are mobile and governed by Brownian motion. Longer times
above liquidus allow more gas bubbles to reach the edges of the solder deposit where the bubble will disappear and not be
replaced.



To enhance this bubble movement effect, the application of vacuum to the solder joint while the solder is in its molten phase
has shown to be very effective in reducing BTC voids. The trapped gas bubbles expand under vacuum and are far more likely
to reach the edges of the solder deposit and disappear. The pressure inside trapped gas bubbles changes according to the
Young-Laplace Equation

Poubble = Pampient + 2y / T

where vy is surface tension, r is the radius of the bubble and Pambien: iS the pressure in the vacuum reflow chamber. The reduced
pressure in the bubble, Puunoie, can then used to determine the new bubble size according to the ideal gas law.

Methodology

In this study, a known high voiding solder paste flux and powder alloy combination was used [6]. Two vacuum pressures, 5
and 20 torr were used. Two vacuum dwell times, 30 and 60 seconds were also used, making the vacuum process a 2 x 2 full
factorial experimental design.

One production lot of a FR-4 test vehicle was produced, then split into 4 lots for copper surface finishing. 15 of the boards
were finished with electroless nickel, immersion gold (ENIG), 15 were finished with Immersion Tin, 15 with Immersion
Silver and 15 had an Organsic Surface Preservative (OSP) finish. The DOE called for 4 conditions, and 3 boards were used
for each condition, leaving 3 contingency test vehicles for each surface finish.

Several spare OSP boards were used to establish the desired reflow profiles. Figure 4 shows the unpopulated company test
vehicle which measured 25.4 x 13.3 x .24 cm (10 x 5.25 x .093 in.). Figure 5 shows the test vehicle populated with
components. The components included MLF 100s, DPAK TO-252s, BGA 256s, and LGA 228s,

Figure 4- Unpopulated Test Vehicle
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Figure 5- Populated Test Vehicle

Solder paste was printed using a 100um thick laser cut stainless steel stencil with no coating. Components were placed, then
the assemblies were fed into an air atmosphere, 8 zone convection oven with a special vacuum chamber located after
convection zone 8 and before cooling zone 1. Two separate conveyors meet in this zone. As the assemblies reached the
chamber, the assembly is transferred onto the second conveyor which is not moving. The vacuum chamber closes, and air is
evacuated from the chamber.  Figures 6 and 7 show the outline of the oven, and a close up of the vacuum chamber.

Figure 6- Eight Heat Zone Convection Oven with Vacuum Chamber in between Heat and Cooling Zones



Figure 7- Vacuum Chamber Detail

Two reflow profiles were used. Both had similar 150°C to 200°C soak profiles for approximately 77 seconds, and peak
temperatures measured between 240° and 245°C. Profile 1 used a 30 second dwell time in the vacuum chamber. Profile 2
used a 60 second dwell time. These reflow profiles are shown in figures 8 and 9.
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Figure 8- Reflow Profile 1; 30 seconds dwell in vacuum
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Figure 9- Reflow Profile 2; 60 seconds dwell in vacuum

In order to maintain the reflow temperature in the vacuum chamber, an IR heating element is incorporated into the upper
surface of the vacuum chamber. A set point of 320°C is needed to maintain the peak reflow temperature depicted in Figures 8
and 9.

Experimental Procedure

In addition to the 2 x 2 x 4, pressure, dwell time and surface finish elements of the experiment, several paste print patterns
were used on the MLF 100 center heat sink pad. It has been reported that by providing channels for vapor to escape, BTC
voiding can be reduced [6]. For each condition 3 sets of test vehicles and components were used. There were a total of 48
assemblies, each with 3 BTCs and one BGA, resulting in a total of 28,176 solder joints. After reflow, 2D X-ray images were
developed and representative images are shown in Appendix A.

Results and Discussion

Based on the results from this study indicated in Appendix A, void reduction under vacuum reflow has very little dependence
on surface finish. Now that this is understood, it would be interesting to see if prior lead free reflows would have an effect on
voiding, particularly with the immersion tin finish. Creation of increased CusSns intermetallic at the pad surface makes this a
potentially challenging substrate for lead free solder applications.

Also demonstrated in this study was that the level of vacuum (5 torr and 20 torr) had a marginal effect on the void reduction.
Both levels of vacuum gave extremely low (well below 0.2% in the MLF 100 heat sink area) levels of voiding as a % of the
total area of the solder joint. From this result, there appears to be no marginal return in generating a lower level of vacuum
than 20 torr. Moreover, there was a lack of response for dwell time under vacuum when the solder in the assemblies is
above the alloy liquidus (218°C). The 60 second dwell samples showed similar levels of void reduction when compared to
the 30 second dwell time samples. Both dwell times showed excellent void reduction results so there was no room for
improvement by increasing the dwell time to 60 seconds. More experiments need to be run to determine what the curves of
vacuum level and vacuum dwell time versus voiding area might look like, or whether void reduction is a simple step function
for both of these DOE parameters.

The most obvious conclusion of this work was that applying vacuum while the solder alloy is in the liquid phase has a
significant affect on reducing BTC component voiding. The BGA 256 samples had low levels of voiding with or without
vacuum. This was expected because of the long soak profile and relatively small deposits (.4mm circles, .1mm high) of the
BGA packages. The effect on the larger area solder paste deposits, the heat sinks on the MLF 100 and TO-252 packages, was
much more significant as can be seen in figures 10 and 11.



Figure 10- TO-252 Package with no vacuum (left) and 5 torr for 60 seconds vacuum (right)
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Figure 11- MLF 100 Package with no vacuum (center) and 5 torr for 60 seconds vacuum (right). Note channel
pattern used (left).

Conclusions

The use of a vacuum chamber in an in-line convection reflow oven has the potential to reduce voiding significantly in large
area pads designed to draw heat away from power semiconductors. This allows for more effective heat dissipation, less heat
generation, longer battery life and more reliable assemblies.

Using 20 torr of vacuum and 30 seconds of dwell time was sufficient to cause this significant reduction in voiding. Sixty
second dwell in the vacuum showed no additional (significant) decrease in the level of voiding observed. Likewise, reducing
the atmospheric pressure from 20 torr to 5 torr did not show a measureable improvement in void reduction. Finally, the four
surface finishes used in this study all showed the same level of void reduction using the vacuum process while the solder
alloy was in the molten phase.
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Appendix A:

1. QFN “MLF 100” of With Vacuum & Without Vacuum
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# with Vacuum ( Storr 60sec )
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1. QFN “MLF 100” of With Vacuum & Without Vacuum

# Type 3 # without Vacuum # with Vacuum ( Storr 60sec )
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Figure 14

1. QFN “MLF 100” of With Vacuum & Without Vacuum

# Type 4 # without Vacuum # with Vacuum ( 5torr 60sec )
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1. QFN “MLF 100” of With Vacuum & Without Vacuum

# Type 5 # without Vacuum # with Vacuum ( 5torr 60sec )
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Figure 16

1. TR “TO-252" of With Vacuum & Without Vacuum

# Type # without Vacuum # with Vacuum ( Storr 60sec )

Figure 17



1. BGA “BGA 256" of With Vacuum & Without Vacuum

# Type # without Vacuum # with Vacuum ( 5torr 60sec )
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Figure 18

1. BGA “LGA 228" of With Vacuum & Without Vacuum

# Type # without Vacuum # with Vacuum ( 5torr 60sec )
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ENIG ( 5torr / 30sec) ENIG ( 5torr / 60 sec)
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ENIG ( 20torr / 30sec) ENIG ( 20torr / 60 sec)
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SN ( 5 torr/ 30sec)
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SN (20 torr/ 60 sec)
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Ag ( 5 torr/ 30sec)
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Figure 25

Ag (5 torr/ 60 sec)
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OSP ( 5 torr / 30sec)
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Figure 26

OSP (5 torr / 60 sec)
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Figure 27: OSP surface finish.






