# COMPARING PAST BOARD ASSEMBLY INEMI ROADMAPS TO TECHNOLOGY OUTCOMES

Annaka Balch
Thayer School of Engineering
Hanover, NH, USA
Annaka.Balch.19@Dartmouth.edu

Ronald C. Lasky, Ph.D., P.E. Indium Corporation NY, USA

#### **ABSTRACT**

This project compares past board assembly roadmaps with actual technological outcomes. Its conclusions are mixed: some aspects that the roadmaps covered were very accurate, while others could use improvement. This paper also draws general conclusions on the outline and readability of the board assembly roadmaps. These roadmaps were given to Dr. Lasky and me at no cost from Marc Benowitz, the CEO of iNEMI, for the purpose of this project.

This paper examined the progression of predictions across seven significant aspects of board assembly covered in the 1994, 2002, 2007, 2013 and 2017 roadmaps: 1) Conversion Costs, 2) NPI Cycle Time, 3) Component Trends, 4) Solder Paste, 5) Bar Solder, 6) Wave Solder Flux and 7) Die Attach Adhesives.

Conversion costs were quantified across the 1994, 2002 and 2007 roadmaps and were found to be accurate, if not conservatively estimated (see *Figure 5*). Even the estimate in the 1994 Roadmap for 15 years out was within 0.05 cents of the actual technological outcome per I/O. NPI predictions were found to be extremely accurate quantitatively as well as qualitatively. The area with the most discrepancy between the roadmaps' predictions and actual technological outcomes is in component trends. Maximum I/O density, minimum pitch for area array packages and chip speed placement were all overestimated markedly, especially in the earlier roadmaps

It should be noted that there are discrepancies between these roadmaps, but this project aims to bridge these discrepancies in a comprehensive fashion to better inform iNEMI for future roadmaps.

# INTRODUCTION

The iNEMI (International Electronics Manufacturing Initiative) is an industry led research and development consortium of approximately 90 leading electronics manufacturers, suppliers, associations, government agencies and universities. The organization's mission is to forecast and accelerate improvements in the Electronic Manufacturing industry for a sustainable future via collaborative innovation. They accomplish this by road-mapping future technology

requirements for the electronics industry globally, identifying and prioritizing technology and infrastructure gaps and helping to eliminate these gaps through high-impact collaborative projects.

The roadmaps have covered 21 unique technology areas or TWGs (Technology Working Groups), spanning fields from Board Assembly, Optoelectronics to Packaging. They not only drive the direction of collaborative internal projects, but electronics manufacturing design and electronics supply chains globally.

Since 1994, iNEMI has produced a roadmap every other year, explaining in detail the anticipated technological advancements needed by large technology companies. These advancements are determined from companies higher on the supply chain regarding the technology they anticipate needing in the next 5 to 10 years. These companies work with iNEMI to congregate ideas on necessary technological advancements at the lower supply chain level for the future by publishing these biannual comprehensive roadmaps. These lower supply chain microelectronics manufacturers rely on this iNEMI roadmap to direct allocation of money to research and development.

However, many leaders in the microelectronics industry have voiced their concern that predictions in these roadmaps have not been accurate of actual technology advancements.

This independent project examines the progression of these roadmaps in the board assembly technology area by qualitatively and quantitatively analyzing predictions from the 1994, 2002, 2007, 2013 and 2017 roadmaps. It should be noted that there are discrepancies between these roadmaps—from general outline to the many aspects of board assembly that are investigated. This project aims to bridge these discrepancies in a comprehensive fashion to better inform iNEMI and identify possible areas for improvement.

#### **CONVERSION COSTS**

The conversion cost is the cost to take a group of parts and convert them into a functional electronic assembly, including testing, material and procurement costs less the initial material cost. This is the expected cost by Original Equipment Manufacturers (OEMs), not the actual cost paid by Electronics Manufacturing Services (EMSs). All costs associated with manufacturing and testing the assembly are considered.

With respect to conversion costs, the 1994 roadmap expresses units differently than the rest of the roadmaps (¢/pin). This roadmap also breaks conversion costs into three different categories: commodity, portable and PCMCIA (Personal Computer Memory Card International Association). These predictions are shown in *Figure 1*. The 1994 Roadmap adds that the United States is 1 to 2 years behind Japan with respect to cost as it does not have enough product volume to generate cycles of learning needed to re-establish infrastructure.

|                                  | Current | 3 – 5<br>Years | 5 – 15<br>Years |
|----------------------------------|---------|----------------|-----------------|
| Conversion cost, commodity ¢/pin | 0.45    | 0.4            | 0.35 - 0.2      |
| Conversion cost, portable ¢/pin  | 2       | 1.5            | 1 - 0.4         |
| Conversion cost,<br>PCMCIA ¢/pin | 2       | 1.5            | 0.5 - 0.35      |

Figure 1. 1994 Roadmap Conversion Costs

The 2002 Roadmap highlights a swift reduction in conversion costs among all product sectors relative to previous forecasts due to increased productivity and migration of manufacturing activities to low cost countries.<sup>2</sup> The roadmap is pessimistic of this trend, predicting that migrating manufacturing activities to low cost countries will "strip North America of manufacturing capabilities and eventually research and development activities." The roadmap suggests aggressive investment in optoelectronics and high frequency electronics to combat this.

While the microelectronics industry has seen decreased conversion costs across all sectors, the greatest reduction has been in the office systems product sector. This has offered lower costs with the same capabilities to the consumer. Figures 2 and 3 show 2002 Roadmap projections for conversion costs. Units for conversion costs for the 2002 Roadmap and onwards are expressed in  $\phi$  ÷ I/O (Input/Output).

| FIRST YEAR OF SIGNIFICANT PRO     | DUCTION |      | 2001 | 2003 | 2005 | 2007 | 2010 | 2013 |
|-----------------------------------|---------|------|------|------|------|------|------|------|
| Parameter                         | Metric  |      | Cost |      |      |      |      |      |
| Automotive and Aerospace Products | ¢÷I/O   | 2000 | 2.00 | 1.80 | 1.60 |      | 1.50 |      |
|                                   |         | 2002 |      | 2.00 | 1.80 | 1.60 |      | 1.60 |
| Consumer Products                 | ¢÷I/O   | 2000 | 0.60 | 0.50 | 0.40 |      | 0.22 |      |
|                                   |         | 2002 |      | 0.4  | 0.35 | 0.30 | 0.20 | 0.15 |
| Portable Products                 | ¢÷I/O   | 2000 | 0.65 | 0.50 | 0.45 |      | 0.30 |      |
|                                   |         | 2002 |      | 0.50 | 0.45 | 0.40 | 0.30 | 0.30 |
| Office Systems Products           | ¢÷I/O   | 2000 | 0.32 | 0.29 | 0.26 |      | 0.19 |      |
|                                   |         | 2002 |      | 0.28 | 0.25 | 0.23 |      |      |
| Business System Products          | ¢÷I/O   | 2000 | 1.00 | 0.80 | 0.75 |      |      | 0.65 |
|                                   |         | 2002 |      | 0.80 | 0.75 | 0.70 | 0.65 | 0.60 |

Figure 2. 2002 Roadmap Conversion Costs

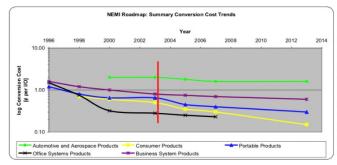



Figure 3. 2002 Roadmap Conversion Costs Graph

With respect to conversion costs, the 1994 roadmap expresses units differently than the rest of the roadmaps ( $\phi$ /pin). This roadmap also breaks conversion costs into three different categories: commodity, portable and PCMCIA (Personal Computer Memory Card International Association). These predictions are shown in *Figure 1*. The 1994 Roadmap adds that the United States is 1 to 2 years behind Japan with respect to cost as it does not have enough product volume to generate cycles of learning needed to re-establish infrastructure.

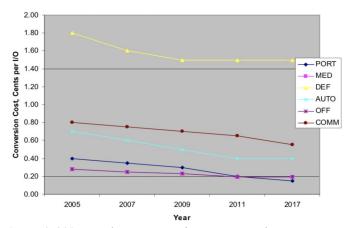



Figure 4. 2007 Roadmap Conversion Costs Graph

The 2013 and 2017 Roadmaps do not quantify conversion cost predictions, but states that "All costs associated with manufacturing and testing the assembly are considered" and that conversion costs are very closely tied to the escape rate and migration to low cost geographies.

<sup>&</sup>lt;sup>1</sup> These costs usually align but is slightly more ambiguous during the lead-free transition.

<sup>&</sup>lt;sup>2</sup> This decrease in conversion costs is said to have no correlation to increased SMT (Surface Mount Technology) utilization.

It appears that conversion costs have been estimated appropriately, if not conservatively. *Figure 5* shows predictions for conversion costs across the portables sector,<sup>3</sup> however it should be noted that units differ slightly in 1994 from the 2002 and 2007 roadmaps, from cents per part to cents per I/O, respectively.

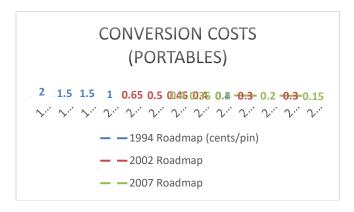



Figure 5. Conversion Costs Comparison Graph

#### NEW PRODUCT INTRODUCTION CYCLE TIME

New Product Introduction (NPI) cycle time is the time between a design released for alpha prototyping<sup>4</sup> to its release for production. The metric was developed in the 2002 Roadmap and was measured in two categories: 1) Product reengineering and 2) New products. The time for both of these categories is between the first prototype bill release and the first manufacturing production bill release. *Figure 6* shows projections for both categories.

| FIRST YEAR OF SIGNIFICANT |        | 2001 | 2003 | 2005 | 2007 | 2010 | 2013 |     |
|---------------------------|--------|------|------|------|------|------|------|-----|
| Parameter                 | Metric |      | Cost |      |      |      |      |     |
| New Product Introductions | Days   | 2002 |      | 266  | 200  | 150  |      | 100 |
| Product Re-spins          | Days   | 2002 |      | 50   | 35   | 25   |      | 15  |

Figure 6. 2002 Roadmap NPI

Figure 6. 2002 Roadmap NPI The 2002 Roadmap also states that the NPI cycle time is heavily dependent on qualification process time, or the time to confirm that a manufacturer is able to operate at a certain standard during sustained commercial manufacturing.<sup>5</sup> Predicted qualification cycle times in the 2002 Roadmap can be seen in *Figure 7*.

| <sup>3</sup> The portables sector is the only common sector across all |
|------------------------------------------------------------------------|
| years and seems to be of particular significance.                      |

<sup>&</sup>lt;sup>4</sup> The alpha prototype is used to assess whether the product functions as it is intended to.

|                                     |        |      | 2001 | 2003 | 2005 | 2007 | 2010 | 2013 |
|-------------------------------------|--------|------|------|------|------|------|------|------|
| Parameter                           | Metric |      |      |      |      |      |      |      |
| Component Qualification Cycle Time* | Month  | 2002 |      | 3-6  | 3-6  | 2-3  |      | 1-2  |
| Assembly Qualification Cycle Time*  | Month  | 2002 |      | 2-4  | 2-4  | 2-3  |      | 1-3  |
| System Qualification Cycle Time*    | Month  | 2002 |      | 3-12 | 3-10 | 2-8  |      | 1-6  |
| Customer Qualification Cycle Time** | Month  | 2002 |      | 3-4  | 3-4  | 2-3  |      | 1-2  |

Figure 7. 2002 Roadmap Qualification Times

In the context of NPI Cycle Time, the 2007 Roadmap focuses purely on the second category—new products—but breaks predictions down according to sectors. The roadmap projects a reduction of over 60% in NPI cycle time by 2017, with automobiles, communications and defense having the longest projected NPI and portables, office equipment and medical sectors having shorter NPI times. *Figure 8* shows predicted NPI cycle times from the 2007 Roadmap.

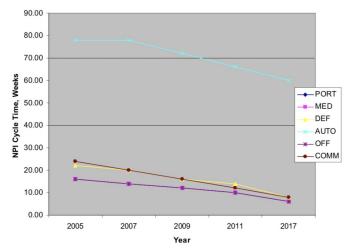



Figure 8. 2007 Roadmap NPI Graph

The 2007 Roadmap was the last roadmap to quantify expectations for NPI cycle time, and a comparison can be seen in *Figure 9*. It appears that estimates in this timeframe were reasonable, if not conservative.



Figure 9. NPI Comparison Graph

<sup>&</sup>lt;sup>5</sup> Qualification process time is heavily sector dependent; there are very stringent qualification cycles for harsh environment, medical or large business applications

<sup>&</sup>lt;sup>6</sup> Note that 2002 Roadmap predictions were converted to weeks to match units with the 2007 Roadmap.

The 2013 Roadmap projects that NPI services will follow the demands of the industry and are not going to be a gate for future developments. The roadmap also breaks NPI into four phases: Functional Verification and Testing, Proof of Concept, Manufacturing Readiness and Ramp to Volume. In 2013, some OEMs also started to outsource NPI, although there has been virtually no development of material sets aimed specifically at NPI needs. The 2013 Roadmap does not cover key product sectors, because these expectations are well established in their respective sectors.

The 2013 Roadmap gives keys recommendations for NPI cycle time reduction, including having design rules applied as early as possible, having design rules include commonalities, minimizing hard tooling or other set-up functions (which add cost and increase cycle time) and adding more time to test strategy at NPI stage. *Figure 10* shows a table of attributes of NPI. The roadmap also suggests increased investment in modeling and simulation.

|                | Unit                                              | Functional<br>Verification | Proof of<br>Concept      | Mfg<br>Readiness          | Ramp to Volume                |
|----------------|---------------------------------------------------|----------------------------|--------------------------|---------------------------|-------------------------------|
| Quantiites     |                                                   | < 10                       | < 10                     | < 100                     | 100-1000+                     |
| DfM            | Percentage of<br>total design<br>checks available | < 20%                      | < 40%                    | 60 - 100%                 | 100%                          |
| Reliability    | Various                                           | None                       | HALT                     | HALT,<br>ESS, ALT,<br>etc | Burn-in,<br>HASA,<br>ORT, etc |
| Mfg Cycle Time | Days in Mfg                                       | < 5                        | < 10                     | Standard                  | Standard                      |
| Test           | Various                                           | Function with other assy   | Flying<br>Probe,<br>Xray | Production<br>Level       | Production<br>Level           |

Figure 10. 2013 and 2017 Roadmap NPI Stages

The roadmap breaks future priorities with respect to NPI into short, medium and long-term priorities. The Short term priorities include the elimination of hard tooling and counterfeit parts from the supply chain. Medium term priorities include the use of modeling simulation tools and the consolidation of DfX rule systems to accommodate new technologies. Long term priorities include a transition to deposited materials as a replacement for discrete components, different delivery methods, material developments to help qualify high reliability applications and new interconnect technologies to provide more flexible routing options, reducing or eliminating PCB fabrication cycle time.

The 2017 Roadmap breaks NPI into the same four phases (Functional Verification and Testing, Proof of Concept, Manufacturing Readiness and Ramp to Volume). Additionally, the *exact same* key recommendations are given (having design rules applied as early as possible, having design rules include commonalities, minimizing hard tooling or other set-up functions and adding more time to test strategy at NPI stage). Likewise, the 2017 Roadmap gives the same recommendation for investment in modeling and simulation. *Figure 10* is also presented in the 2017 Roadmap. This latest roadmap also breaks priorities into short, medium and long-term. To contextualize these priorities, it is useful to examine

In some cases, the 2013 Roadmap gave an accurate time horizon for priorities. For example, the consolidation of DfX systems moved from medium-term to short-term. However, other priorities seem to have been classified too ambitiously: for example, the elimination of counterfeit parts from the supply chain remains a short-term priority. Likewise, the use of modeling and simulation tools remains a medium-term priority in the 2017 Roadmap. It should be noted that all long-term priorities in the 2013 Roadmap remain in the long-term horizon in the 2017 Roadmap.

#### COMPONENT TRENDS

This section examines component trends, scrutinizing maximum component I/O density, the maximum I/O per package divided by the package area (max I/O per area), component and substrate sizes and component placement rates. Similar to the discrepancy of units in the conversion cost section of this paper, the 1994 Roadmap expresses packaging density in parts per square inch rather than I/O per square centimeters. The earliest roadmap also highlights the transition from packaged ICs to packageless direct chip attach. See *Figure 11* for 1994 Roadmap predictions for component trends.

|                         | Current | 3 – 5 Years | 5 – 15 Years |
|-------------------------|---------|-------------|--------------|
| Parts / in <sup>2</sup> | 105     | 200         | 275 - 500    |
| Pins / part             | 35      | 52          | 75 - 270     |
| IC lead                 | 0.5     | 0.3         | 0.2 - 0.07   |
| pitch (mm)              |         |             |              |

Figure 11. 1994 Component Trends

The 2002 Roadmap indicates that the complexity of components will nearly double by 2013 for all product sectors, which could shape component types, size and pitch. The roadmap forecasts a flattening of the pitch in perimeter, array area packages and die size. *Figure 12* shows estimates for Maximum I/O Density by sector. *Figure 13* shows predictions for component and substrate sizes and *Figure 14* shows predictions for component placement rates.

how they compare and contrast to the 2013 Roadmap. It is reasonable to assume that short-term priorities should have been accomplished by the publication of the 2017 Roadmap. It is also reasonable to assume that medium-term priorities would have shifted to short-term priorities, however because long-term is defined as 8 or more years, it seems presumptuous to assume that all long-term priorities would move to the medium-term.

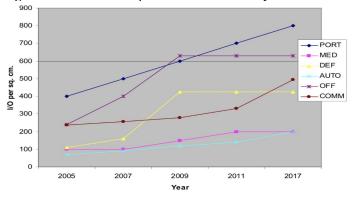
<sup>&</sup>lt;sup>7</sup> Short term, medium term and long term are defined as 1 to 3 years, 3 to 7 years and 8 or more years respectively.

Figure 12. 2002 Roadmap Maximum I/O Density

| FIRST YEAR OF SIGNIFICANT PRO     | FIRST YEAR OF SIGNIFICANT PRODUCTION |      |     | 2003 | 2005 | 2007 | 2010 | 2013 | 2016 |
|-----------------------------------|--------------------------------------|------|-----|------|------|------|------|------|------|
| Parameter                         | Metric                               | Cost |     |      |      |      |      |      |      |
| Automotive and Aerospace Products | I/O÷cm <sup>2</sup>                  | 2000 | 100 | 180  | 260  |      | 1500 |      |      |
|                                   |                                      | 2002 |     | 180  | 260  | 260  |      | 1500 |      |
| Consumer Products                 | I/O÷cm <sup>2</sup>                  | 2000 | 208 | 256  | 280  |      | 470  |      |      |
|                                   |                                      | 2002 |     | 208  | 256  | 280  | 320  | 360  |      |
| Portable Products                 | I/O+cm <sup>2</sup>                  | 2000 | 175 | 240  | 290  |      | 400  |      |      |
|                                   |                                      | 2002 |     | 280  | 320  | 350  | 400  | 450  |      |
| Office Systems Products           | I/O÷cm <sup>2</sup>                  | 2000 | 160 | 240  | 400  |      | 630  |      |      |
|                                   |                                      | 2002 |     | 240  | 400  | 630  |      | 630  |      |
| Business System Products          | I/O+cm <sup>2</sup>                  | 2000 | 156 | 196  | 256  |      | 400  |      |      |
|                                   |                                      | 2002 |     | 237  | 256  | 278  | 331  | 400  | 494  |

Figure 13. 2002 Roadmap Component Sizes

| FIRST YEAR OF SIGNIF                    | ICANT PRODUC | TION | 2001  | 2003    | 2005      | 2007    | 2010      | 2013      |
|-----------------------------------------|--------------|------|-------|---------|-----------|---------|-----------|-----------|
| Parameter                               | Metric       |      |       |         |           |         |           |           |
| Passives – Discrete                     | Mils         | 2000 | 10x20 | 10x20   | Deposited |         | Deposited |           |
|                                         |              | 2002 |       | 10x20   | 10x20     | 10x20   |           | Deposited |
| Passives – Arrays<br>Pitch              | Mm           | 2000 | 0.5   | 0.4     | 0.4       |         | 0.4       |           |
|                                         |              | 2002 |       | 0.4     | 0.4       | 0.4     |           | 0.4       |
| Area Array Pitch<br>Underfilled)        | Mm           | 2000 | 0.5   | 0.4     | 0.25      |         | 0.2       |           |
|                                         |              | 2002 |       | 0.65    | 0.5       | 0.5     |           | 0.4       |
| Perimeter Pitch                         | mm           | 2000 | 0.4   | 0.4     | 0.4       |         | 0.3       |           |
|                                         |              | 2002 |       | 0.4     | 0.4       | 0.4     |           | 0.4       |
| Maximum Component<br>Complexity (Array) | I/O's / Part | 2000 | 700   | 1000    | 1200      |         | 1500      |           |
|                                         |              | 2002 |       | 1156    | 1300      | 1500    |           | 2000      |
| Large Substrate                         | mm           | 2000 |       |         |           |         |           |           |
| Products                                |              | 2002 |       | 500x585 | 500x585   | 500x585 |           | 500x585   |


Figure 14. 2002 Roadmap Placement Rates

| FIRST YEAR OF SIGNIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CANT     |      | 2001  | 2003   | 2005      | 2007        | 2010      | 2013      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-------|--------|-----------|-------------|-----------|-----------|
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metric   |      |       |        | Chip Plac | ement       |           |           |
| Chip Placement (multi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 2000 |       |        |           |             |           |           |
| Gantry) (Actual measured rate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cph      | 2003 |       | 80,000 | 110,000   | 120,00<br>0 |           | 150,000   |
| Chip Placement (turret)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-1-     | 2000 |       |        |           |             |           |           |
| - 10 NO 10 N | Cph      | 2003 |       | 27,000 | 33,000    | 38,000      |           | 45,000    |
| Chip Placement (Gantry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m²/hr    | 2000 |       |        |           |             |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m²/nr    | 2003 |       | 14,000 | 17,000    | 20,000      |           | 25,000    |
| Chip Placement (not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cph      | 2000 |       |        |           |             |           |           |
| gang) Per IPC 9850 Std.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Срп      | 2003 |       | 25,000 | 37,000    | 48,000      |           | 60,000    |
| Chip Placement (not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m²/hr    | 2000 | 8,000 | 9,000  | Deposited |             | Deposited |           |
| gang)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111-7111 | 2003 |       | 8,000  | 9,000     | 12,000      |           | Deposited |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metric   |      |       |        | IC Place  | ment        |           |           |
| IC Placement (BGA /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 2000 | 0.4   | 0.3    | 0.25      |             | 0.20      |           |
| QFP) to 25mm<br>On the fly Vision & (208<br>QFP / 480 BGA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sec/part | 2003 |       | 0.6    | 0.4       | 0.3         |           | 0.2       |
| IC Placement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 2000 |       |        |           |             |           |           |
| (BGA/QFP) w/vision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sec/part | 2003 |       | 3.0    | 2.8       | 2.2         |           | <2        |
| IC Placement (CSP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 2000 | 1.5   | 1.3    | 1.0       |             | .25       |           |
| w/vision Low ball count<br><120 i/o, w/tape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sec/part | 2003 |       | 1.5    | 0.3       | 0.25        |           | 0.10      |
| IC Placement (C4/FCA)<br>W/ Ball Inspect, w/o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sec/part | 2000 |       |        |           |             |           |           |
| fluxing, w/tape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ooo,part | 2003 |       | 1.5    | 1.5       | 1.0         |           | 0.5       |
| IC Placement (C4/FCA) W/ Ball Inspect W/ball                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sec/part | 2000 |       |        |           |             |           |           |
| inspect, w/fluxing, w/tray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Coopart  | 2003 |       | 4.0    | 4.0       | 3.0         |           | 2.0       |

The 2007 Roadmap predicts a significant increase for maximum component I/O density in the portables sector. In the office equipment and defense sectors predict a plateau after 2009 due to the high cost of fine line routing for PCBs and flattening die size increases. In terms of minimum package pitch for area array packages. See *Figure 15* for component I/O density predictions by sector. The 2007 Roadmap predicts a 0.4 mm minimum package pitch for area array packages by 2009 and 0.3 mm by 2011. See *Figure 16* for predictions by sector. *Figure 17* shows the part placement technology forecast in the 2007 Roadmap.

<sup>8</sup> The 2013 Roadmap does not quantify estimates for maximum I/O density.

Figure 15. 2007 Roadmap Maximum I/O Density



**Figure 16.** 2007 Roadmap Minimum Package Pitch for Area Array Packages

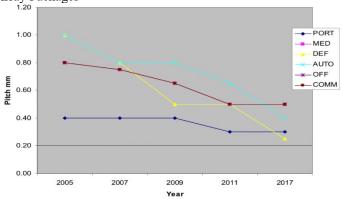



Figure 17. 2007 Roadmap Placement Rates

| Parameter                              | Metric                                                                        | 2005   | 2007   | 2009   | 2011   | 2017   |
|----------------------------------------|-------------------------------------------------------------------------------|--------|--------|--------|--------|--------|
| Chip Placement Speed                   | CPH per square meter<br>using the IPC 9850<br>standard for 0603<br>components | 12,000 | 15,000 | 16,000 | 17,000 | 20,000 |
| IC Placement Speed -<br>Large Size IC  | CPH per square meter<br>using the IPC 9850<br>standard for QFP 208            | 1,200  | 1,500  | 1,600  | 1,700  | 2,000  |
| IC Placement Speed -<br>Medium Size IC | CPH per square meter<br>using the IPC 9850<br>standard for SO-16              | 5,400  | 6,750  | 7,200  | 7,650  | 8,000  |
| IC Placement Speed -<br>Flip Chip      | CPH per square meter                                                          | 5,000  | 6,000  | 7,000  | 8,000  | 10,000 |
| Chip Placement Speed                   | CPH per square meter<br>using the IPC 9850<br>standard for 0603<br>components | 12,000 | 15,000 | 16,000 | 17,000 | 20,000 |
| IC Placement Speed -<br>Large Size IC  | CPH per square meter<br>using the IPC 9850<br>standard for QFP 208            | 1,200  | 1,500  | 1,600  | 1,700  | 2,000  |
| Placement Accuracy<br>Chips            | Microns                                                                       | 70     | 50     | 40     | 30     | 30     |
| Placement Accuracy<br>Fine Pitch       | Microns                                                                       | 60     | 50     | 40     | 30     | 30     |
| Rotation Accuracy Fine<br>Pitch        | Degrees                                                                       | 0.3    | 0.1    | 0.1    | 0.07   | 0.05   |
| Component Pick reliability             | % pick reliability                                                            | 99.8   | 99.9   | 99.95  | 99.97  | 99.97  |
| Minimum Placement<br>Force Range       | Grams                                                                         | 50     | 40     | 30     | 20     | 10     |
| Maximum Placement<br>Force Range       | Grams                                                                         |        |        |        |        |        |

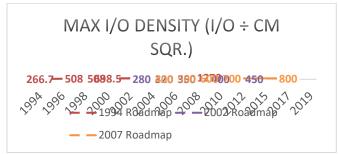
In the context of component trends, the 2013 Roadmap predicts that increasing maximum I/O density<sup>8</sup> will demand further reduction in device pitch size. The portables sector predicts a 0.4 mm pitch by 2013 and a 0.3 mm pitch by 2015. *Figure 18* shows placement speed estimates from the 2013 Roadmap.

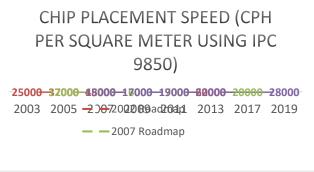
| Parameter                           | 2007   | 2009   | 2011   | 2013   | 2019   |
|-------------------------------------|--------|--------|--------|--------|--------|
| Placement Speed                     | 15,000 | 17,000 | 19,000 | 22,000 | 28,000 |
| Placement Speed – Large Size IC     | 1,600  | 1,700  | 2,000  | 2,300  | 3,200  |
| Placement Speed – Medium<br>Size IC | 7,000  | 7,500  | 8,500  | 10,000 | 15,000 |
| Placement Speed – Die<br>Placement  | 6,000  | 7,000  | 8,000  | 9,500  | 12,000 |

Figure 18. 2013 Roadmap Placement Rates

The 2017 Roadmap also does not quantify the maximum I/O density but predicts a 0.3 mm pitch by 2019 in the portables sector. The placement speed estimates table in the 2017 Roadmap is identical to that in the 2017 Roadmap (see *Figure 18*).

Looking at component trends throughout these roadmaps, we notice substantial over-optimism in earlier roadmaps. However, this seems to be corrected in later roadmaps. See *Figure 19* for a comparison of the 1994, 2002 and 2007 Roadmaps in the context of maximum I/O Density. It appears that the 1994 Roadmap was overambitious, the 2002 Roadmap was under-ambitious, and the 2007 Roadmap met these projections in the middle. Again, note that maximum I/O density was not quantified in later roadmaps.





Figure 19. Maximum I/O Density Comparison Graph

See Figure 20 for a comparison of all roadmaps in the context of minimum pitch for area array packages in the portables industry. It appears that iNEMI was consistently overambitious, most so in the 1994 Roadmap, but also by consistently predicting and re-predicting the transition from 0.4 mm to 0.3 mm pitch size.



Figure 20. Minimum Pitch for Area Array Packages Comparison Graph

See *Figure 21* for a comparison across the 2002, 2007, 2013 and 2017 Roadmaps in the context of chip placement speed in components per hour (CPH). Note that the exact same tables were given in the 2013 and 2017 Roadmaps (see *Figure 18*). Similar to the maximum I/O density estimates, the 1994 Roadmap was incredibly optimistic while the 2007 Roadmap was under-optimistic, and the 2013 and 2017 Roadmaps met these estimates in the middle.



**Figure 21.** Chip Placement Speed (CPH per Square Meter Using IPC 950) Comparison Graph

# **SOLDER PASTE**

Solder paste is a powder metal solder that is suspended in a thick flux to act as a temporary adhesive, holding components together until the soldering process fuses parts together. Beginning in 2007, the iNEMI roadmaps provide estimates on the percent of solder pastes that will be lead-free and halogen-free. Since 2007, there has been a prediction of the

transition to lower temp lead-free solder alloys in 2011 to 2017 timeframe, but this is still a prediction in the 2017 roadmap. It seems that this has been consistently overestimated. *Figure 22* and *23* show lead-free predictions for North America and Worldwide, respectively.



**Figure 22.** North America Lead-free Solder Pastes Predictions Comparison Graph



**Figure 23.** Worldwide Solder Pastes Lead-free Predictions Comparison Graph

It appears that the percentage of halogen-free solder was overestimated in the 2007 Roadmap, but later corrected in the 2013 and 2017 Roadmap.

## **BAR SOLDER**

Beginning in 2007, the iNEMI roadmaps provide estimates on the percent of bar solder that will be lead-free. The 2007 Roadmap highlights the trend towards increased adoption of low silver content wave solder alloys, which have an equal or better performance than high silver alloys at a lower cost. The 2007 Roadmap also highlights the industry need for lower melting point lead-free alloys.

The 2013 Roadmap highlights not only the increased adoption of low silver solder alloys, but also the increased adoption of no silver solder alloys. Again, there is the longer-term goal to develop lower melting point lead-free alloys. Moreover, thicker boards with lower cost pad finishes and higher layer counts will influence new solder alloy

development, especially alloys with superior wetting properties. Additionally, the 2013 Roadmap notes the movement to selective soldering (which will reduce the tonnage of bar solder) and recycling solder dross.

The 2017 Roadmap makes similar comments as the 2013 Roadmap about no silver alloys, lower melting point lead-free alloys and recycling solder dross. However, it also highlights copper dissolution, as it remains an issue on thick, high layer count Telecom boards. See Figures 24 and 25 for a comparison of lead-free bar solder percentages in North America and Worldwide, respectively.



**Figure 24.** North America Lead-free Bar Solder Predictions Comparison Graph



**Figure 25.** North America Lead-free Bar Solder Predictions Comparison Graph

## WAVE SOLDER FLUX

Wave soldering is used in bulk manufacturing of printed circuit boards. Beginning in 2007, iNEMI began making estimates on what percentage of wave solder flux would be volatile organic compound (VOC) free and halogen free. The 2007 Roadmap highlights the need for dual alloy compatibility because of uncertain schedule for lead free implementation in autos, medical, aerospace and defense. Wave soldering fluxes that have the ability to perform with tin, lead and high temperature lead-free applications were also predicted in to be important through 2011.

The 2013 Roadmap identifies that thicker boards (greater than 2 mm) with low cost pad finishes and preconditioned by prior SMT reflows as an important market driver as Telecom transitions to lead-free, as higher layer counts require longer dwell times. The Roadmap also predicts that environmental initiatives will drive growth of halogen-free flux. VOC fluxes

<sup>&</sup>lt;sup>9</sup> Silver pricing is extremely volatile.

are also desirable, but the roadmap does not anticipate as much dominance here because of hole-fill difficulties on thicker boards. 10

Similarly, the 2017 Roadmap highlights thicker boards as an important market driver as Telecom transitions to lead-free. Identical language is used in the 2017 Roadmap as the 2013 Roadmap in terms of halogen-free and VOC-free fluxes. Rather, in 2017, fluxes were formulated to meet the electromigration standards set in J-STD-004, as some products have experienced failures do to electro-migration. Pin testability is also said to be important for ICT for longer dwell times.

Figure 26 shows the evolution of predictions of VOC-free wave solder flux from 2007 to 2017. It appears that the 2007 Roadmap grossly overestimated the adoption of VOC-free flux, but the 2013 and 2017 roadmaps have comparable predictions.

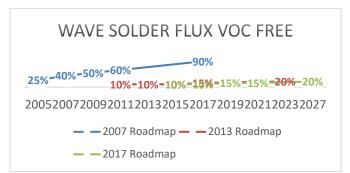



Figure 26. VOC Free Wave Solder Flux Comparison Graph

Like VOC-free flux, it appears that the roadmaps overestimated the adoption of halogen-free flux (see Figure 27). Because the 2013 Roadmap still differs drastically from the 2017 Roadmap, it would be worth investigating the likelihood of legislation or environmental issues that could affect this adoption.



Figure 27. Halogen Free Wave Solder Flux Comparison Graph

# **DIE ATTACH ADHESIVES**

Die attach adhesives are used to connect semiconductor chips to packaging substrates as well as control warpage and help mitigate stress during operation. Die attach adhesives are discussed in more depth in the 2007, 2013 and 2017 Roadmaps. However, there is identical language in all three roadmaps: "Polymer based die attach, either paste or preapplied, capable of meeting the parallel technology challenges of Flip Chip underfills (for heat and moisture resistance) and polymer technology to withstand the higher lead-free reflow temperatures, will be needed."

The 2013 and 2017 roadmaps highlight three key drivers: 1) lead-free, 2) increased power density and the resulting need for thermal management and 3) use of stress sensitive low K silicon. Figures 28, 29 and 30 show die attach adhesives percentages that fit into polymer pre-applied, polymer paste and low K silicon, respectively. All three of these seem to be predicted accurately, however, it appears that the change over time is very minimal.



Comparison Graph



Figure 29. Die Attach Adhesives Polymer Comparison Graph

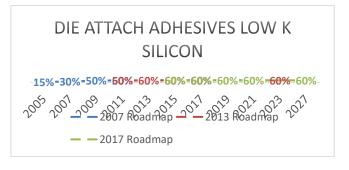



Figure 30. Die Attach Adhesives Low K Silicon Comparison Graph

### CONCLUSION

iNEMI has made many projections over the last century, a majority of them very accurate. With all the advancements in new legislation, many would expect otherwise. Conversion costs and NPI cycle time were all estimated very accurately, even 15 years out in 1995. The area with the most

<sup>&</sup>lt;sup>10</sup> This, however, has the capacity to change if legislation changes.

discrepancies was in component trends, where the 1994 and 2002 roadmaps largely overestimated component density capabilities.

While this project makes conclusions about the evolution of predictions since 1994, it should be noted that many of the metrics were complex to compare. The roadmaps contrast greatly in their general outline and what metrics are used. Some roadmaps discuss metrics qualitatively and some roadmaps discuss metrics quantitatively.

This project aimed to bridge these discrepancies into a comprehensive reflection on the roadmap predictions versus actual technological outcomes.

#### REFERENCES

"Board Assembly." iNEMI Technology Roadmaps. Jan 2013.

"Board Assembly." NEMI Technology Roadmaps. Dec 2002.

Electronics Manufacturing Technology Roadmaps - and-Options for Government Action. National Electronics Manufacturing Framework Committee. Dec 1994.

Dr. Dongkai Shangguan (Chair), Dr. Ravi Bhatkal and David Geiger (Co-chairs). "Board Assembly." iNEMI Roadmaps. Jan 2007.

Paul Wang, Ph.D., MBA MiTAC (Chair) and Jasbir Bath, Bath Consultancy (Co-chair). "2017 Roadmap: Board Assembly." iNEMI Technology Roadmaps. Jan 2017.

Peck, Sam, director. *Electronic Assembly at PCM. YouTube*, YouTube, 5 June 2012, www.youtube.com/watch?time\_continue=2&v=afmz9-D4IPg.