Research
Embedded Components from Concept-To-Manufacturing
Copper Foil Elements Affecting Transmission Loss with High Speed Circuits
pH neutral Cleaning Agents - Market Expectation & Field Performance
Reducing Dust Deposition on Electronic Equipment
New Requirements for Sir Measurement
Effects of Mixing Solder Sphere Alloys with Bismuth-Based Pastes
The Development of a 0.3 mm Pitch CSP Assembly Process
Generalizations About Component Flatness at Elevated Temperature
MORE RESEARCH
Latest Industry News
iPhone 12 Production Could Be Delayed
Acer sees PC component shortages
Bio-Ink for 3-D Printing Inside the Body
Covid Seen Driving the Security Sector
U.S. Eases Restrictions on Private Remote-Sensing Satellites
EMS Manufacturing quote complexity drives OEMs to look behind EMS curtain
U.S. Manufacturing Rebounds to 14-Month High
IBM's New AI Tool Parses A Tidal Wave of Coronavirus Research
MORE INDUSTRY NEWS

Innovative Panel Plating for Heterogeneous Integration



Innovative Panel Plating for Heterogeneous Integration
This paper will show that improvements in feature density, deposition uniformity and void free via filling can be achieved in large panel processing.
Production Floor

DOWNLOAD

Authored By:


Richard Boulanger, Jon Hander, Robert Moon, Richard Hollman
ASM NEXX
Billerica, Massachusetts

Summary


The migration to large panel substrates in advanced packaging applications is principally motivated by cost considerations. However, it is occurring at a time when package processing is becoming more complex and demanding. New package architectures featuring heterogeneous integration (HI), such as Intel's EMIB, TSMC's INFO, and many others, present challenging new requirements in the fabrication process. With feature sizes less than 10 microns, increasing number of patterned layers, and vias between layers, these demanding process steps must be realized on wafer and panel substrates alike.

The traditional equipment set for large panel substrates typically uses bulk processing and is not designed for wafer-like process requirements. Thus, a new class of process tool is required to bridge this technology gap, maintaining the economy of scale of large panel tools while meeting the requirements of current and future package architectures. For electroplating process steps, a vertical tool architecture running a single panel per process cell makes it possible to directly apply advanced wafer plating technology to panel substrates.

Individual panels are loaded in a rigid holder to minimize warpage and provide the large currents necessary for plating large areas. An overhead transport conveys the loaded panels to a series of cells which carry out the necessary steps in the deposition process. The initial step is a vacuum prewet, which prevents the occurrence of air bubbles in deep features when the panel is introduced into a plating bath. A series of plating cells allows a stack of different metals to be deposited in a single pass through the tool. Each cell is customized for a particular metal and, with features such as multiple anode zones and pattern-specific shields, can be customized for each device. Efficient agitation is also adapted from wafer plating tools to provide the fastest and best quality deposition processes.

This paper will show that the improvements in feature density, deposition uniformity and void free via filling that are required for heterogeneous integration can be achieved in large panel processing, providing the desired cost reduction relative to wafer processing for interposers and other package structures.

Conclusions


As traditional monolithic integration is being replaced by heterogeneous integration in electronic packaging, both silicon interposers and printed circuit boards (PCBs) are being considered. Silicon interposers exist today but are expensive (35- 40 cents per cm2 per layer). PCBs are less expensive but do not quite have the technology for the required interconnect density. We have demonstrated how a wafer plating tool can be reinvented to plate panels while achieving high density circuitry to reduce the costs and obtain unparalleled plating uniformity.

Initially Published in the SMTA Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Solder Paste Beyond The Shelf Life?
Issues With Fillets on Via Holes?
Can Tape Residue Contaminate a Clean Tank?
Suggested Stencil Wipe Frequency?
Reflow Oven Zone Separation Challenges
When To Use Adhesive To Bond SMT Components
How To Clean a Vintage Circuit Board Assembly?
PCBA Inspection Concerns
MORE BOARD TALK
Ask the Experts
Lifted Lead on SOT Component
Allowable Bow and Twist on Round PC Fab
Mixed MSL Baking
Step Stencil Squeegee Angle
Solder Balling Splash After Reflow
Application Using No-Clean and Water Soluble Fluxes
IPC SOIC Defect Question
Mixed Process Solder Joint Appearance, Smooth or Grainy?
MORE ASK THE EXPERTS