Research
Pick-and-Place Feeder density within SMT and Electronics Assembly
Optimization of Robotic Soldering Process: Solder Spread and Spattering
Reliability Improvements by the Creation of Intermetallic Connections
Reliability of Stacked Microvia
Controlling Voiding Mechanisms in the Reflow Soldering Process
Nanocopper Based Paste for Solid Copper Via Fill
Advanced Printing for Microelectronic Packaging
SIR Test Vehicles - Comparison from a Cleaning Perspective
MORE RESEARCH
Latest Industry News
How Many Qubits Needed For Quantum Supremacy?
Entering the Era of Real-Time AI
Pandemic Delays Electronic Product Launches
How South Korea turned an urban planning system into a virus tracking database
Verizon Partners with Movandi, NXP, Qualcomm for 5G
Top safety official at Waymo self-driving unit stepping down
Facebook says half of its employees might be remote
How Leaders Nurture Emotional Well-Being During Times Of Crisis
MORE INDUSTRY NEWS

Reliable Nickel-Free Surface Finish for High-Frequency-HDI PCB



Reliable Nickel-Free Surface Finish for High-Frequency-HDI PCB
In this paper, assemblies involving this nickel-less novel surface finish have been subjected to extended thermal exposure, then intermetallics analyses.
Materials Tech

DOWNLOAD

Authored By:


Kunal Shah, Ph.D.
LiloTree
Redmond, WA, USA

Summary


The evolution of internet-enabled mobile devices has driven innovation in the manufacturing and design of technology capable of high-frequency electronic signal transfer. Among the primary factors affecting the integrity of high-frequency signals is the surface finish applied on PCB copper pads – a need commonly met through the electroless nickel immersion gold process, ENIG. However, there are well-documented limitations of ENIG due to the presence of nickel, the properties of which result in an overall reduced performance in high-frequency data transfer rate for ENIG-applied electronics, compared to bare copper.

An innovation over traditional ENIG is a nickel-less approach involving a special nano-engineered barrier designed to coat copper contacts, finished with an outermost gold layer. In this paper, assemblies involving this nickel-less novel surface finish have been subjected to extended thermal exposure, then intermetallics analyses, contact/sheet resistance comparison after every reflow cycle (up to 6 reflow cycles) to assess the prevention of copper atom diffusion into the gold layer, solder ball pull and shear tests to evaluate the aging and long-term reliability of solder joints, and insertion loss testing to gauge whether this surface finish can be used for high-frequency, high density interconnect (HDI) applications.

Conclusions


The Ni-less surface finish of cyanide-free immersion gold plated onto a nano-engineered barrier layer on top of copper is a viable solution for high-frequency-HDI applications. The surface finish was tested for change in contact/sheet resistance after each reflow cycles (up to 6 cycles), intermetallic growth, solder ball brittle failures, and insertion loss. The results showed that this surface finish performs better than other currently available Ni-free surface finishes, such as DIG and EPIG/EPAG, due to its smaller intermetallics, lack of brittle solder joint failures, and extremely low insertion loss compared to bare copper. Also, change in contact/sheet resistance after 6 reflow cycles is insignificant suggesting nano-engineered barrier layer prevent copper atoms diffusion into gold layer. This Ni-less surface finish with nano-engineered barrier layer is a good solution to the current need for a reliable surface finish for high-frequency, HDI PCB applications.

Initially Published in the SMTA Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Maximum Board Temperature During Tin-Lead
Is There a Spacing Spec for SMD Components?
Connector Bowing During Reflow Process
Is HASL a Good Choice for Surface Finish?
Long Term Component Storage
Has My Flux Expired?
What Causes Solder Balls During Hand Soldering?
Processing Circuit Boards with BGAs On Both Sides
MORE BOARD TALK
Ask the Experts
EMI Shield Reflow Soldering Techniques
Can a Few Contaminated Joints Cause an Assembly to Fail RoHS Compliance?
Copper Dissolution Rate
Excess Flux Residue After Hand Soldering
Solder Paste Viscosity
How To Rework SMT Connector with Center Ground Strip
Solder Paste Mixing
Shelf Life Limit for Soldering Old Components
MORE ASK THE EXPERTS