Embedded Components from Concept-To-Manufacturing
Copper Foil Elements Affecting Transmission Loss with High Speed Circuits
pH neutral Cleaning Agents - Market Expectation & Field Performance
Reducing Dust Deposition on Electronic Equipment
New Requirements for Sir Measurement
Effects of Mixing Solder Sphere Alloys with Bismuth-Based Pastes
The Development of a 0.3 mm Pitch CSP Assembly Process
Generalizations About Component Flatness at Elevated Temperature
Latest Industry News
iPhone 12 Production Could Be Delayed
Acer sees PC component shortages
Bio-Ink for 3-D Printing Inside the Body
Covid Seen Driving the Security Sector
U.S. Eases Restrictions on Private Remote-Sensing Satellites
EMS Manufacturing quote complexity drives OEMs to look behind EMS curtain
U.S. Manufacturing Rebounds to 14-Month High
IBM's New AI Tool Parses A Tidal Wave of Coronavirus Research

Qualitative Model Describing Hot Tear Above VIPPO and Other Design Elements

Qualitative Model Describing Hot Tear Above VIPPO and Other Design Elements
The mechanism for the formation of Hot Tears is discussed and applied to other design elements that can be found on Printed Circuit Board Assemblies.
Production Floor


Authored By:

Gรผnter Gera, Udo Welzel, Yin Jizhe, Harald Feufel
Robert-Bosch GmbH
Schwieberdingen, Germany


Over the last couples of years there have been numerous reports of a unique soldering failure resulting in a separation of BGA solder joints from the intermetallic compound at the interposer during reflow. In most cases, the failures were correlated with the use of Via-In-Pad-Plated-Over-Technology (VIPPO). Since the separation could be proven to occur during the Phase transition from solid to liquid [1] it was called Hot Tear. Since the Hot Tear results in a very thin separation it is usually not inspectable neither by means of X-Ray inspection nor by electrical testing, but results in very early field failures.

In this paper, the general mechanism for the formation of Hot Tears will be discussed and applied to numerous other design elements that can be found on Printed Circuit Board Assemblies (PCBA). We will show that due to several industry trends e.g. VIPPO, heavy copper PCBs, buried vias, non-eutectic alloys, thinner components, thicker boards, via in pad, etc. the probability of Hot Tears is steadily increasing.


The understanding of the failure mode Hot Tear has been extended from cohesive tearing during the solidification of liquid material to all possible forms of tearing - cohesive and adhesive โ€“ during the phase transition both from solid to liquid and from liquid to solid. It could be shown that for the Hot Tears a thin liquid film needs to be present. Adhesive Hot Tears occur if the liquid film forms near one of the interfaces by means of directional melting or solidification. The temperature difference โˆ†๐‘‡ and the thickness of the solder joint ๐‘‘ could be identified as the main influencing factors on the directional phase transition. The tensile stress necessary for the formation of Hot Tears can be originated either by the Component, the solder material itself or by the PCB. With respect to PCB induced stress, it could be shown that local variations of the copper content have a strong impact on the thermal expansion perpendicular to the PCB surface. With this qualitative model, it is possible to completely understand the formation of Hot Tears of BGA balls on mixed VIPPO/non-VIPPO designs during the second Reflow.

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Solder Paste Beyond The Shelf Life?
Issues With Fillets on Via Holes?
Can Tape Residue Contaminate a Clean Tank?
Suggested Stencil Wipe Frequency?
Reflow Oven Zone Separation Challenges
When To Use Adhesive To Bond SMT Components
How To Clean a Vintage Circuit Board Assembly?
PCBA Inspection Concerns
Ask the Experts
Lifted Lead on SOT Component
Allowable Bow and Twist on Round PC Fab
Mixed MSL Baking
Step Stencil Squeegee Angle
Solder Balling Splash After Reflow
Application Using No-Clean and Water Soluble Fluxes
IPC SOIC Defect Question
Mixed Process Solder Joint Appearance, Smooth or Grainy?