Embedded Components from Concept-To-Manufacturing
Copper Foil Elements Affecting Transmission Loss with High Speed Circuits
pH neutral Cleaning Agents - Market Expectation & Field Performance
Reducing Dust Deposition on Electronic Equipment
New Requirements for Sir Measurement
Effects of Mixing Solder Sphere Alloys with Bismuth-Based Pastes
The Development of a 0.3 mm Pitch CSP Assembly Process
Generalizations About Component Flatness at Elevated Temperature
Latest Industry News
iPhone 12 Production Could Be Delayed
Acer sees PC component shortages
Bio-Ink for 3-D Printing Inside the Body
Covid Seen Driving the Security Sector
U.S. Eases Restrictions on Private Remote-Sensing Satellites
EMS Manufacturing quote complexity drives OEMs to look behind EMS curtain
U.S. Manufacturing Rebounds to 14-Month High
IBM's New AI Tool Parses A Tidal Wave of Coronavirus Research

High Thermal, High Temperature Interconnects for Ultra High Power LEDs

High Thermal, High Temperature Interconnects for Ultra High Power LEDs
For high performance applications, ultra-high power offers cost reduction through fewer LEDs, smaller PCBs, smaller heat sinks and lighter load bearing.
Production Floor


Authored By:

Ravi M. Bhatkal, Ph.D. and Ranjit Pandher, Ph.D.
Alpha Assembly Solutions
South Plainfield, NJ, USA


Use of super/ultra-high power LEDs is increasing. For high performance applications such as street lighting and ultrahigh power density illumination, use of ultra-high power can enable significant systems cost reduction through use of fewer LEDs, smaller PCBs, smaller heat sinks and lighter load bearing structures. In order to be able to drive the LEDs harder and to increase light output in a smaller footprint, one needs efficient thermal performance at the LED die-to-package connection. The ultra-high power density, combined with high thermal metal substrates, (which have high CTE mismatch with ceramic sub-mount LEDs) necessitates use of ultra-high reliability interconnects for elevated temperature operation at the package-to-board connection.

This paper presents two technology platforms: 1. Sintered silver, which enables significant increase in light output at package level, and 2. High temperature creep resistant solder alloys that provide high thermal cycling reliability under high temperature and high CTE mismatch conditions.


1. For high and ultra-high power LEDs, for a given LED package structure and board material used, it is beneficial to use solder joints with improved mechanical and thermal fatigue/creep and vibration resistance. A new class of creep-resistant and vibration resistant alloys has been developed, that can provide this capability, via a micro-structural control approach. These advanced alloys have been developed with special additives for improved thermal stability for high temperature operation and higher thermal fatigue and vibration resistance.

2. Sintered silver technology has several benefits for high and ultra-high power LEDs, including enabling higher light output while maintaining junction temperature, enabling excellent control of tilt, directionality and optical axis, and providing very high thermal cycling reliability.

3. These emerging technologies are enabling us to push the envelope in implemeting ultra-high power LEDs in several applications.

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Solder Paste Beyond The Shelf Life?
Issues With Fillets on Via Holes?
Can Tape Residue Contaminate a Clean Tank?
Suggested Stencil Wipe Frequency?
Reflow Oven Zone Separation Challenges
When To Use Adhesive To Bond SMT Components
How To Clean a Vintage Circuit Board Assembly?
PCBA Inspection Concerns
Ask the Experts
Lifted Lead on SOT Component
Allowable Bow and Twist on Round PC Fab
Mixed MSL Baking
Step Stencil Squeegee Angle
Solder Balling Splash After Reflow
Application Using No-Clean and Water Soluble Fluxes
IPC SOIC Defect Question
Mixed Process Solder Joint Appearance, Smooth or Grainy?