Electronics Assembly Knowledge, Vision & Wisdom
Conformal Coatings in Preventing Resistor Silver Sulfide Corrosion
Conformal Coatings in Preventing Resistor Silver Sulfide Corrosion
The evaluation of conformal coatings to mitigate silver sulfide corrosion of thick film resistors is discussed.
Materials Tech

Materials Tech programs cover topics including:
Adhesives, Chemicals, Cleaning Solutions, Coatings, Components, Design, Embedded Technology, Fasteners, Finishes, Flex Circuits, Flip Chip, Fluxes, PC Fab, Solders, Solder Masks, Solder Paste and more.
Submit A Comment
Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company

Your E-mail

Your Country

Your Comment

Authored By:
Marie Cole, Jacob Porter, Jason Wertz, Marc Coq
IBM Corporation
Poughkeepsie, NY, USA

Jim Wilcox and Mike Meilunas
Universal Instruments Corporation
Conklin, NY, USA

Thick film resistors are used extensively in a variety of electronics applications. The silver in a conventional thick film resistor is prone to the attack of sulfur-bearing gaseous contamination. This problem has been documented for servers that are found in data centers, due to the environmental pollution of sulfur in certain industrial locations and more typically, in growth market countries where the use of coal to produce electricity is prevalent.

The growth of silver sulfide, resulting from silver corrosion, can cause an increase in resistance and eventually, an electrical open of the resistor. The best method to increase the robustness of resistors in high sulfur environments is to employ Anti-Sulfur Resistors (ASR). These resistors either have a structure alteration to seal the ingress path from sulfur bearing gases or use a noble metal for the resistor contacts. Occasionally, unique resistor part numbers have limited availability in ASR construction. Thus, it is beneficial to have alternate techniques to mitigate sulfurinduced corrosion.

This paper will discuss the evaluation of conformal coatings to mitigate silver sulfide corrosion of thick film resistors. Two-part epoxy has been demonstrated to prevent resistor corrosion, but has manufacturability concerns in high volume production. Conversely, coatings that contain silicone are known to increase silver sulfide corrosion due to their inherent nature in readily absorbing sulfur. Other conformal coating chemistries are available for various applications, but have not been tested for their ability to mitigate silver sulfide corrosion of resistors. A Flowers of Sulfur (FoS) test procedure can evaluate the tendency for silver sulfide corrosion of resistors to occur as a predictor of field performance. This technique was used to evaluate polyurethane and acrylic materials, in addition to a nanocoating. Uncoated, epoxy-coated and silicone-coated samples were used as controls for comparison to the coatings evaluated. Results and observed corrosion trends for a variety of resistor body sizes will also be discussed

The inconsistent results and lack of protection provided by many of the coatings reinforces the need for accelerated corrosion testing prior to the selection of any conformal coating that will be used in a high sulfur environment.

The search continues for a conformal coating material that can be applied in a highly manufactuable process and that consistently provides a high degree of protection from corrosion. A relatively new UV curable, single part epoxy with properties similar to the successful two part epoxy could be an attractive alternative that should be evaluated.

Initially Published in the SMTA Proceedings

No comments have been submitted to date.
Free Newsletter Subscription
Every issue of the Circuit Insight email newsletter will bring you the latest information on the issues affecting you and your company.

Insert Your Email Address

Directory Search

Program Search
Related Programs
bullet Characterizing Thermal Fatigue Reliability of Third Generation PB-Free Alloys
bullet Exploring the Reliability Limits for Silicone Adhesives
bullet Ultrathin Fluoropolymer Coatings to Mitigate PCB Damage
bullet Durable Conductive Inks for Robust Printed Electronics
bullet Residues on Probing PCBAS-Consistent Connections Across No-Clean Fluxes
bullet When To Use Adhesive To Bond SMT Components
bullet Jetting Fine Lines onto 2D and 3D Electronic Packages
bullet Hybrid Conformal Coatings for Mitigating Tin Whiskers
bullet Effectiveness of Conformal Coat to Prevent Corrosion of Terminals
bullet Aerosol Jet Printing of Conductive Epoxy for 3D
More Related Programs