Electronics Assembly Knowledge, Vision & Wisdom
Smart Textiles Detect Nerve Gas
Smart Textiles Detect Nerve Gas
A chemical engineer at City College of New York recently developed smart textiles with the ability to rapidly detect and neutralize nerve gas.
Technology Briefing

,{url:'http://www.circuitinsight.com/videos/technology_briefing_smart_textiles_detect_nerve_gas.mp4'}], clip:{autoBuffering:true, autoPlay:true, scaling:'scale' } }).ipad();
Technology Briefing is brought to you by association with Audio-Tech, publishers of critically acclaimed programs including: Trends Magazine.

Subscribe to their monthly reports and learn about big ideas, new products, new management techniques, breakthrough concepts, and trailblazing technologies.
Transcript

Dr. Teresa Bandosz a chemical engineer at City College of New York recently developed smart textiles with the ability to rapidly detect and neutralize nerve gas. As explained in the journal, Nanoscale Horizons, this groundbreaking discovery could potentially reduce the threat posed by chemical warfare agents.

The fabric consists of a cotton support modified with Copper-BTC and oxidized graphitic carbon nitride composites. The oxidized graphitic carbon nitride composites were developed previously by Bandosz and tested as a nerve agent detoxification medium. Combining this with Copper-BTC resulted in a nanocomposite of heterogeneous porosity and chemistry.

Upon the deposition of the nanocomposite onto cotton textiles, a stable fabric exhibiting supreme photocatalytic detoxification capability with respect to nerve gas, resulted.

The detoxification process was accompanied by a visible and gradual color change, which could be used for the selective detection of chemical warfare agents and for monitoring their penetration inside a protective layer.

The smart textiles produced almost 7 grams of nerve gas detoxification products per gram of copper. This superior performance was linked to the high dispersion of the oxidized graphitic carbon nitride crystals on the fibers, and a specific texture promoting the availability of the active copper centers.

Bandosz is now seeking funding for additional research.

Submit A Comment

Comments are reviewed prior to posting. Please avoid discussion of pricing or recommendations for specific products. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Company


E-mail


Country


Comments


Authentication

Please type the number displayed into the box. If you receive an error, you may need to refresh the page and resubmit the information.



Related Programs
bullet The Era of Quantum Computing Microprocessors Dawns
bullet 3D Printed Food
bullet Zero-Emission Vehicles
bullet Latest in Public-Key Encryption Chip
bullet Wearable Cameras
bullet Quantum Computing Becomes a Real Technology
bullet Greater Storage on Smaller Chips
bullet Quantum Computers Break Encryption
bullet New Methods Extract Lithium from Water
bullet The Portable Smartphone Laboratory
More Related Programs