Electronics Assembly Knowledge, Vision & Wisdom
Surface Mount Warpage Case Study
Surface Mount Warpage Case Study
A quantity of surface mount packages were measured by shadow moire metrology to capture warpage levels, as they were heated through a reflow profile.
Analysis Lab

Analysis Lab programs cover topics including:
Corrosion, Contamination, Data Acquisition, ESD and EOS, Inspection, Measurement, Profiling, Reliability, R&D, RFID, Solder Defects, Test, Tombstoning, X-ray and more.
Submit A Comment
Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company

Your E-mail

Your Country

Your Comment

Authored By:
Neil Hubble

Jerry Young, Kim Hartnett
Micron Technology

Surface mount components are commonly evaluated for out-of-plane warpage levels across reflow temperatures. Decision making from these measurements is primarily based on signed warpage of a single component surface, per industry standards. However, signed warpage as a gauge can mislead users when surface shapes are complex, or direction of warpage is uncertain. The presented case study analyzes a range of common surface mount components for signed warpage. This wide ranging case study is used to create newly proposed methods for further defining and characterizing surface warpage in a quantitative manner.

Analysis of the case study data focuses on two related surface parameters: signed warpage Signal Strength and surface shape naming. Signal Strength is used to classify samples that are in "transition" between positive and negative warpage directions. New methods are shown to represent these transition areas in signed warpage graphs. Surface shape naming is used to further classify surface types, wherein correlation between shape name and surface mount defects are discussed. Algorithms for calculation of Signal Strength and classifying shape names are offered. Real world examples are used to determine appropriate thresholds for sign transitions and shape names in said algorithms. The study proposes a new, industry wide, approach to how companies present component warpage data.

A large quantity of surface mount packages were measured by shadow moire metrology to capture warpage levels, as the samples were heated through a reflow profile. Found warpage data was used to improve upon new methods of communicating surface shape, when dealing with large quantities of data.

JEDEC Full Field Signed Warpage (JFFSW) is already an often preferred gauge over the industry standard signed warpage, used by many industry leading companies, as the critical gauge for package warpage. This paper goes a step further in refining understanding of package shape, by introducing a new gauge, 3S Warpage. 3S Warpage not only classifies shapes as positive and negative, but also mathematically defines a third indeterminate category,labeled as a transition surface. This added category is designed to limit confusion in summarizing package 3D surface shape with a single gauge.

Packages from the case study were also assigned a shape name, established by newly established algorithms. Shape naming algorithms were improved through an iterative process, when compared with qualitative shape assignments. The shape name adds a new variable that can be tracked and correlated over time with surface mount attachment reliability and surface to surface mating. These shape names can be used in establishing package trends and for further, future understanding of assembly yield based upon package warpage.

Initially Published in the IPC Proceedings

No comments have been submitted to date.
Free Newsletter Subscription
Every issue of the Circuit Insight email newsletter will bring you the latest information on the issues affecting you and your company.

Insert Your Email Address

Directory Search

Program Search
Related Programs
bullet Preparation for Mitigating Tin Whiskers in Alternative Lead-Free Alloys
bullet Analysis of Laminate Material Properties for Correlation to Pad Cratering
bullet What Causes Board Delamination?
bullet Risk and Solution for No-Clean Flux Not Dried Under Components
bullet Sticky Residue Under Low Clearance Parts
bullet Testing PCBs for Creep Corrosion
bullet Mitigating Tin Whiskers in Alternative Lead-Free Alloys
bullet Human-Induced Contamination on PCB Assembly
bullet Can High Particle Concentrations Impact PCB Assembly?
bullet Collaboration to Combat Head on Pillowing Defects
More Related Programs