Electronics Assembly Knowledge, Vision & Wisdom
A New Line Balancing Method
A New Line Balancing Method
In this paper the authors present a new method of handling an assignment problem for hybrid manual and robotic assembly mixing lines.
Production Floor

Production Floor programs cover topics including:
CAD/CAM/CIM/EDA, Circuit Board Handling, Clean Room, Cleaning Operations, Component Insertion, Component Prep, Dispensing, Feeders, Fume Extraction, Hand Tools, Labeling/Marking, Lasers, Material Handling, Odd Form, Ovens/Curing, Packaging, Stencil Printing, Repair/Rework, Soldering and more.
Submit A Comment
Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company


Your E-mail


Your Country


Your Comment



Authored By:
Ryo Murakami, Sachio Kobayashi, Hiroki Kobayashi and Junji Tomita
Fujitsu Laboratories

Summary
Automating electronics assembly is complex because many devices are not manufactured on a scale that justifies the cost of setting up robotic systems, which need frequent readjustments as models change. Moreover, robots are only appropriate for a limited part of assembly because small, intricate devices are particularly difficult for them to assemble. Therefore, assembly line designers must minimize operational and readjustment costs by determining the optimal assignment of tasks and resources for workstations. Several research studies address task assignment issues, most of them dealing with robot costs as fixed amount, ignoring operational costs.

In real factories, the cost of human resources is constant, whereas robot costs increase with uptime. Thus, human workload must be as large and robot workload as small as possible for the given number of humans and robots. We propose a new task assignment method that establishes a workload balancing that meet precedence and further constraints. The following must be determined before using our method: which tasks robots can perform, and which workstations robots are assigned to. We assume that humans can perform every task and consider the constraints that restrict the tasks robots can perform. By applying our method to several case studies, problems involving 20 humans were solved within 1 minute and 1% dispersion.

These results indicate that our method can be used in actual factories where a short-term planning period corresponding to frequent production fluctuations is required. We also applied our method to real assembly data for laptops manufactured by our company and obtained task assignment that reduces the operational costs by 30%. This suggests that our method can contribute to promoting the automation of electronics assembly by demonstrating its cost reduction potential.

Conclusions
In this paper, we presented a new method of handling an assignment problem for hybrid manual and robotic assembly mixing lines. The method is based on a tabu search for a constraint satisfaction problem. The aim is to assign tasks to workstations, each of which is occupied by either a human or a robot. The focus is on how to deal with the idle time of each workstation. By assigning tasks to the workstations of humans so that no idle time remains, our method reduces the total processing time of robots by approximately 40% in the laptop case study presented. In the future, further research will be undertaken on reassigning existing assembly lines in response to changes to the production process or production program.

Initially Published in the IPC Proceedings

Comments
No comments have been submitted to date.
Free Newsletter Subscription
Every issue of the Circuit Insight email newsletter will bring you the latest information on the issues affecting you and your company.

Insert Your Email Address

Directory Search


Program Search
Related Programs
bullet What is Solder Paste Working Life on a Stencil?
bullet Step Stencil Setup
bullet Impractical Stencil Aperture Designs to Enable M0201 Assembly
bullet 3D Assembly Processes a Look at Today and Tomorrow
bullet Ultra Low Profile Copper Foil for Very Low Loss Material
bullet The Challenges of LGA Server Socket Trends
bullet Effect of TIM Compression Loads on BGA Reliability
bullet Selecting Stencil Technologies to Optimize Print Performance
bullet Impact of Alloy Composition on Shear Strength for Low Temperature Lead Free Alloys
bullet NSOP Reduction for QFN RFIC Packages
More Related Programs