Electronics Assembly Knowledge, Vision & Wisdom
Stencil Aperture Design for Next Generation Ultra Fine Pitch Printing
Stencil Aperture Design for Next Generation Ultra Fine Pitch Printing
The work reported here represents the start of a series of experiments to help further understand the significance of square vs circular aperture formats.
Production Floor

Production Floor programs cover topics including:
CAD/CAM/CIM/EDA, Circuit Board Handling, Clean Room, Cleaning Operations, Component Insertion, Component Prep, Dispensing, Feeders, Fume Extraction, Hand Tools, Labeling/Marking, Lasers, Material Handling, Odd Form, Ovens/Curing, Packaging, Stencil Printing, Repair/Rework, Soldering and more.
Submit A Comment
Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company


Your E-mail


Your Country


Your Comment



Authored By:
Mark Whitmore, Jeff Schake & Clive Ashmore
DEK Printing Machines Ltd
11 Albany Road, Weymouth
Dorset, DT4 9TH, UK

Summary
Miniaturisation is pushing the stencil printing process. As features become smaller, solder paste transfer efficiency is becoming more critical.

In latest research work, actual paste deposit volumes and transfer efficiency have been monitored and compared for both square and round apertures with area ratio's ranging from 0.20 thru to 1.35. This covers apertures sizes of between 100 and 550 microns in a nominal 100 micron thick stencil foil. In addition, the effect of ultrasonically activated squeegees has been assessed as part of the same experiment. A further comparison has also been made between type 4 and type 4.5 solder paste aswell.

The data presented here will help provide guidelines for stencil aperture designs and strategies for ultra-fine pitch components such as 0.3CSP's.

Conclusions
The next generation of ultra fine pitch components will place extreme demands on the stencil printing process. The requirement for printing solder paste through stencil apertures with area ratios below 0.5 will become common place. The data presented here indicates that with judicial choice of stencil design and materials it will be possible for designers to work with aperture area ratios down to 0.4.

To optimise a process it is becoming increasingly important that an engineer has a good understanding of stencil aperture design specification, material properties and process options/aids available to him. The interactions between all of these facets is becoming more complex and critical to the successful implementation of a process.

Initially Published in the SMTA Proceedings

Comments
No comments have been submitted to date.
Free Newsletter Subscription
Every issue of the Circuit Insight email newsletter will bring you the latest information on the issues affecting you and your company.

Insert Your Email Address

Directory Search


Program Search
[an error occurred while processing this directive]