Electronics Assembly Knowledge, Vision & Wisdom
Ask the Experts
Soldering Components with Silver Pads
We use a low temp profile, did not obtain proper wetting and got solder balls. If the reflow temperature is too high, the silver dissolves.
Ask the Experts

View the Expert comments below.
,{url:'http://www.circuitinsight.com/videos/experts_final.mp4'}], clip:{autoBuffering:true, autoPlay:true, scaling:'scale' } }).ipad();

Arranged via association with Circuitnet..
See the Expert Panel | Submit A Questions | Join the Panel
Ask the Experts Question
Ask the Experts
Soldering Components with Silver Pads
We need to attach a component to a PCB. The component has silver pads. Our normal process is to use a reflow oven. We are concerned that silver will leach into the solder joints.

We have tested conductive epoxy, but the contact resistance is too high. We have also tried silver filled solder SN62 and SN43 with Bismuth. If we use a low temp profile we did not obtain proper wetting and also get solder balls.

If the reflow temperature is too high, the silver dissolves into the solder. What do you suggest?
Expert's Panel Responses
Ag dissolves at the rate of approx. 50 microinches /sec at soldering temperatures. What thickness of Ag is present on the device pads? The addition of Ag to SnPb solders is actually beneficial to joint strength up to a point. You need to keep the Ag wt% down below 5 wt.% - this is an easy calculation based on the volume of paste printed and the metal content of the paste etc. Alternatively you could tin the part pre assembly similar to what people do for gold plated devices.
Gerard O'Brien
S T and S Testing and Analysis
Gerald O'Brien is Chairman of ANSI J-STD 003, and Co Chairman of IPC 4-14 Surface Finish Plating Committee. He is a key member of ANSI J-STD 002 and 311 G Committees Expert in Surface finish, Solderability issues and Failure analysis in the PWA, PWB and component fields.
Solder paste is designed to dissolve some of the metal finish on both the component leads and the circuit board pads in order to form a well bonded solder joint. It will be very difficult to prevent dissolution of the silver into the solder paste. Normally we would recommend using a solder paste that contains silver, e.g. 62Sn/36Pb/2Ag or SAC305 for lead free application. The presence of silver in the solder paste tends to slow the dissolution rate of silver from the component leads.

I suggest using a solder paste with silver in it, and also modification of the reflow profile. A quick profile with a short time above liquidus will help to minimize the amount of silver that will dissolve. If you use 62/36/2 solder paste then try adjusting the profile length (45C to peak) around 3.0 to 3.5 minutes. Adjust the time above liquidus to 45 - 60 seconds, and minimize the peak temp at 210-215C.  These changes to the profile should help minimize the dissolution of silver, but will likely not prevent it. 
Tony Lentz
Field Applications
FCT Assembly
Tony has worked in the electronics industry since 1994. He worked as a process engineer at a circuit board manufacturer for 5 years. Since 1999, Tony has worked for FCT Companies as a laboratory manager, facility manager, and most recently a field application engineer. He has extensive experience doing research and development, quality control, and technical service with products used to manufacture and assemble printed circuit boards. He holds B.S. and M.B.S. degrees in Chemistry.
Solder paste manufactures make a low peak temperature solder paste. I have done this before using such solder paste, see below what Alpha has to provide. Note please make sure that the operating temperature of the product and your post process do not exclude this temperature.

ALPHA CVP-520 is designed to enable low temperature surface mount assembly technology. The lead-free alloy in ALPHA CVP-520 has a melting point below 140C, and has been successfully used with peak reflow profiles between 155C and 190C. The flux residue from ALPHA CVP-520 is clear, colorless, and provides excellent electrical resistivity, exceeding industry standards.
Kishan Sarjoo
Process Engineering Manager - Electronics
Altech UEC, South Africa
Currently with Altech UEC and responsible for technology road map in PCBA electronic manufacturing and technical support for PCBA electronic manufacturing for Altech UEC and its JDM's. Over 7 years in SMT, Radial Insertion, Wave solder & Test Applications.
Since you state that the silver dissolves into the solder, I will assume that there is more than an immersion silver finish on the part. I've dealt with a lot of parts with high-silver thick film terminations (chip capacitors, mostly) in the past. The keys to successful reflow soldering of these components are:
  • Use of SN62 solder to reduce the rate of leaching
  • Strict control of reflow profile to minimize the liquidus time and maximum temperature
The first thing you need to know is that some silver will inevitably leach; if it did not, you would not be forming a solder joint. The idea is to minimize it, while still forming a good, well-wetted joint. Silver is easy to solder, so we at least have a leg up in this regard. If you have a high mass assembly (thick PWB, many heavy components), you will have a much greater challenge than if the assembly is lower mass.

You should strive for a peak temperature of about 205C, and minimize the liquidus time. It is not necessary to have a lot of time above liquidus. I've run reflow process for these components with as little as 25-30 seconds above liquidus.

Once you've formed the solder joint, if the joint appears smooth and not grainy, you have succeeded in limiting the leaching. Graininess will appear first at the boundary of the solder where it meets the component termination, and a fine line of graininess at the very edge is always present. You want to avoid a grainy appearance in the bulk of the joint.
Fritz Byle
Process Engineer
Fritz's career in electronics manufacturing has included diverse engineering roles including PWB fabrication, thick film print & fire, SMT and wave/selective solder process engineering, and electronics materials development and marketing. Fritz's educational background is in mechanical engineering with an emphasis on materials science. Design of Experiments (DoE) techniques have been an area of independent study. Fritz has published over a dozen papers at various industry conferences.
One option would be to avoid the use of a Sn based paste and switch to an indium based paste. The rate of Ag dissolution into indium is much much slower than into tin.
Eric Bastow
Senior Technical Support Engineer
Indium Corporation
Eric is an SMTA-certified process engineer (CSMTPE) and has earned his Six Sigma Green Belt from the Thayer School of Engineering at Dartmouth College. He is also a certified IPC-A-600 and 610D Specialist. He has an associate's degree in Engineering Science from the State University of New York and has authored several technical papers and articles.
If you have worked on the oven profile and also changed the solder paste type and the results are not as expected, did you think about components tinning prior to place them on the PCBs?
Georgian Simion
Engineering and Operations Management
Independent Consultant
Georgian Simion is an independent consultant with 20+ years in electronics manufacturing engineering and operations.
Contact me at georgiansimion@yahoo.com.
Using Ag containing alloy, such as Sn62Pb36Ag2, will reduce the Ag leeching issue. You may also try a different solder paste which wets better and has less tendency of solder balling.
David Bao
Director New Product Development
Metallic Resources, Inc
David Bao has more than fifteen years of experience in developing new solder paste, wave soldering fluxes and other SMT consumables. He currently serves as the Director of New Product Development at Metallic Resources Inc. He received a Ph.D. in Chemistry at Oklahoma State University.
Submit A Comment

Comments are reviewed prior to posting. Please avoid discussion of pricing or recommendations for specific products. You must include your full name to have your comments posted. We will not post your email address.

Your Name






Please type the number displayed into the box. If you receive an error, you may need to refresh the page and resubmit the information.

Related Programs
bullet Behavior of Materials in the Manufacturing Environment
bullet BGA Joint Voids - Accept or Reject?
bullet Solder Joint Embrittlement Mechanisms, Solutions and Standards
bullet Exposed Copper Risk
bullet Evaluation of Stencil Technology for Miniaturization
bullet ENIG Solderability Issues
bullet Soldering Immersion Tin
bullet Effect of Area Shape and Area Ratio on Solder Paste Printing Performance
bullet Hand Soldering at Low Temperature
bullet Alloy Composition and Aging on the Survivability of Lead-Free Solders
More Related Programs