Electronics Assembly Knowledge, Vision & Wisdom
Lead-Free Alloys with Ultra-High Thermo-Mechanical Reliability
Lead-Free Alloys with Ultra-High Thermo-Mechanical Reliability
Alpha focused on improving the properties of the bulk solder as well as controlled growth of interfacial IMCs and alloy microstructure.
Materials Tech

Materials Tech programs cover topics including:
Adhesives, Chemicals, Cleaning Solutions, Coatings, Components, Design, Embedded Technology, Fasteners, Finishes, Flex Circuits, Flip Chip, Fluxes, PC Fab, Solders, Solder Masks, Solder Paste and more.
Submit A Comment
Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company


Your E-mail


Your Country


Your Comment



Authored By:
Pritha Choudhury, Ph.D., Morgana Ribas, Ph.D., Ranjit Pandher, Ph.D., Anil Kumar, Sutapa Mukherjee, Siuli Sarkar, Ph.D., Bawa Singh, Ph.D.
Alpha, an Alent plc Company
South Plainfield, NJ, USA

Summary
Several new applications requiring solder materials that would perform for extended periods under harsh operating conditions have recently emerged. Clearly there is a need for a ROHS compliant solder with thermal and mechanical reliability better than Sn-Ag3-Cu0.5/ Sn-Ag4-Cu0.5 but with a similar melting range so that it can be a drop in replacement for these solders.

In the work shown here, Alpha focused on improving the mechanical properties of the bulk solder as well a controlled growth of interfacial IMCs and alloy microstructure. Major composition additions do impact the melting behavior and the bulk mechanical properties. Minor alloy additions can also alter the diffusion kinetics and have significant impact on the long term reliability. Tensile tests and high temperature creep tests were used for initial screening of the alloys and understanding the potential impact of each addition on the reliability of the solder in final application.

In this paper, a detailed study of the effect of small composition changes (major additions) and of micro additions is presented. Improvements in thermal, mechanical and metallurgical properties of the new alloys are discussed and compared to Sn-Ag3-Cu0.5. We show that the newly developed Pb-free solder alloy Maxrel Plus performs better than Sn-Ag3-Cu0.5 in high strain rate tests such as drop shock and vibration tests as well as in thermal fatigue tests.

Conclusions
A new Pb-free solder alloy has been developed which performs better than industry standard Pb-fee solder SAC305 in high strain rate tests such as drop shock and vibration tests as well as in thermal fatigue tests. A large number of alloys were designed, prepared and tested.

To screen the alloys, basic mechanical properties of the bulk alloy have been measured and used to predict its performance in the final real life application. Final selected candidate alloy, Maxrel Plus, has been extensively tested side by side with SAC305. Maxrel Plus performs better than SAC305 in drop shock, vibration and thermal cycling tests.

Initially Published in the SMTA Proceedings

Comments
No comments have been submitted to date.
Free Newsletter Subscription
Every issue of the Circuit Insight email newsletter will bring you the latest information on the issues affecting you and your company.

Insert Your Email Address

Directory Search


Program Search
Related Programs
bullet The Effects of Phosphorus in Lead-Free Solders
bullet Grain Refinement for Improved Lead-Free Joint Reliability
bullet Reliability of No-clean and Water-soluble Solder Pastes
bullet Effect of Bi Content on Properties of Low Silver SAC Solders
bullet Improving properties of a Lead-free Solder Alloy with Doping of Copper
bullet Mixed Metals Impact on Reliability
bullet New Requirements for Sir Measurement
bullet Testing Intermetallic Fragility
bullet Alternatives to Solder in Packaging and Assembly
bullet Microalloyed Sn-Cu Pb-Free Solder for High Temp
More Related Programs