Electronics Assembly Knowledge, Vision & Wisdom
Corrosion and Contaminant Diffusion Multi-Physics Model
Corrosion and Contaminant Diffusion Multi-Physics Model
Models for copper interconnect degradation are needed for life prediction modeling to ensure 10-year, 100,000 mile reliability for automotive applications.
Analysis Lab

Analysis Lab programs cover topics including:
Corrosion, Contamination, Data Acquisition, ESD and EOS, Inspection, Measurement, Profiling, Reliability, R&D, RFID, Solder Defects, Test, Tombstoning, X-ray and more.
Submit A Comment
Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company


Your E-mail


Your Country


Your Comment



Authored By:
Pradeep Lall and Yihua Luo
Auburn University
NSF-CAVE3 Electronics Research Center
Department of Mechanical Engineering
Auburn, AL, USA

Luu Nguyen
Texas Instruments, Inc,
Santa Clara, CA, USA

Summary
Copper aluminum interconnects are being used in automotive applications for deployment underhood, onengine and on-transmission. Electronics is widely used for enabling safety function including lane departure warning systems, collision avoidance systems, antilock braking systems, and vehicle stability systems. Models for copper interconnect degradation are needed for life prediction modeling to ensure 10-year, 100,000 mile reliability for electronics in automotive applications.

Small concentrations of chloride ions may diffuse towards the bond pad interface under temperature, humidity, and electrical bias. The chloride ions may act as a catalyst breaking down the passivation layer of aluminum pad and accelerate the micro-galvanic corrosion at the copperaluminum leading to the failure of the wirebond. Models for prediction of the diffusion of the chloride ions and the corrosion of the copper-aluminum interface have been difficult to develop, because of the small scale of the interface and the lack of appropriate electro-chemical properties for the Cu-Al system and the Electronic Molding Compounds under conditions relevant to operation.

In this effort, a multiphysics model for galvanic corrosion in the presence of chloride has been presented. The contaminant diffusion along with the corrosion kinetics has been modeled. In addition, contaminated samples with known concentration of KCl contaminant have been subjected to the temperature humidity conditions of 130 degrees C/100RH. The resistance of the Cu-Al interconnects in the PARR test have been monitored periodically using resistance spectroscopy.

The diffusion coefficients of chloride ion has been measured in the electronic molding compound at various temperatures using two methods including diffusion cell and inductively coupled plasma (ICPMS). Moisture ingress into the EMC has been quantified through measurements of the weight gain in the EMC as a function of time. Tafel parameters including the open circuit potential and the slope of the polarization curve has been measured for both copper, aluminum under different concentrations of the ionic species and pH values in the EMC.

The measurements have been incorporated into the COMSOL model to predict the corrosion current at the Cu-Al bond pad. The model predictions have been correlated with experimental data.

Conclusions
In this paper a multiphysics model for galvanic corrosion in the presence of chloride has been developed. The diffusion coefficients of chloride ion has been measured in the electronic molding compound at various temperatures using two methods including diffusion cell and inductively coupled plasma (ICPMS). Moisture ingress into the EMC has been quantified through measurements of the weight gain in the EMC as a function of time.

Tafel parameters including the open circuit potential and the slope of the polarization curve has been measured for both copper, aluminum under different concentrations of the ionic species and pH values in the EMC. Electrochemical polarization tests on aluminum and copper indicates the galvanic corrosion between copper and aluminum is more likely to happen in the alkaline condition than in acidic condition.

SEM/EDS analysis shows that the ionic diffusion in EMCs is due to interfacial diffusion and degradation of EMCs under high temperature results in the loss of binding materials. The contaminant diffusion along with the corrosion kinetics has been modeled. The measurements have been incorporated into the COMSOL model to predict the corrosion current at the Cu-Al bond pad. The model uses moving boundary to keep track of the development of corrosion as time proceeds.

The model also show the gradual local alkalization at bond pad interface as the galvanic corrosion develops. The model predictions have been correlated with experimental data. In addition, contaminated samples with known concentration of KCl contaminant have been subjected to the temperature humidity conditions of 130 degrees C/100RH. The resistance of the Cu-Al interconnects in the PARR test have been monitored periodically using resistance spectroscopy. Model predictions indicate that the pH values in the vicinity of the Cu-Al wirebond continue to evolve as a function of time.

Initially Published in the SMTA Proceedings

Comments
No comments have been submitted to date.
Free Newsletter Subscription
Every issue of the Circuit Insight email newsletter will bring you the latest information on the issues affecting you and your company.

Insert Your Email Address

Directory Search


Program Search
Related Programs
bullet OEM and EMS to Combat Head on Pillowing Defects
bullet Novel Approaches for Minimizing Pad Cratering
bullet Head in Pillow Explained
bullet Tin Whisker Testing and Modeling
bullet Surface Mount Warpage Case Study
bullet Innovative BGA Defect Detection Method for Transient Discontinuity
bullet Acceptable Rate for Head in Pillow?
bullet Process Control of Ionic Contamination in Assembly of Electronic Circuits
bullet Influence of Salt Residues on BGA Head in Pillow
bullet Nickel Hydroxide Corrosion Residues on Ceramic Packages
More Related Programs