Fill the Void II: An Investigation into Methods of Reducing Voiding
Final Finish Specifications Review
DFX on High Density Assemblies
Challenges on ENEPIG Finished PCBs
Testing PCBs for Creep Corrosion
Screening of Lower Melting Point Pb-Free Alloys
Hand Printing using Nanocoated and other High End Stencil Materials
Board Processes and Effects on Fine Copper Barrel Cracks
Latest Industry News
Soldiers could teach future robots how to outperform humans
The iPhone is still breaking sales records during the pandemic
Foxconn says China can no longer be "the world's factory"
The Counterintuitive Way Social Media Can Reduce Stress
Do Engineers Live Longer? A Look at Occupational Factors’ Effect on Longevity
How to Work from Home Successfully
Smartphone shipments in China plunge 35% in July: government data
China handset players launch 5G phones in Taiwan

Connector Design for Wearables

Connector Design for Wearables
Paper discusses contact physics, plating options, force requirements and trade-offs that occur when selecting a connector for an application.
Materials Tech


Authored By:

Randy Schueller, Ph.D.
DfR Solutions
Minneapolis, MN


As electronics continue to shrink and their performance capabilities grow, these electronics are becoming more and more integrated into our daily lives. The next step is the internet of everything and wearable electronics. Communication between devices and providing power through the use of connectors is critical; connector sales are a $50 billion/year industry. As critical as they are, separable connectors are often times the first item to fail in electronics.

This problem is only expected to worsen as electronics are used in increasingly challenging environments. This paper will discuss contact physics, contact plating options, normal force requirements and general tradeoffs that frequently occur when designing or selecting a connector for an application. Physics of failure along with a number of connector failure examples will be presented as well.


Connectors are one of the most critical components in an electronic product and this is anticipated to be especially true with wearable products that will have to endure sweat, high humidity, elevated temperature, corrosive gasses, and various types of debris. In addition, those charged with a power connector should experience a high number of insertion withdrawal cycles.

Whenever possible, select connector systems with a long history of success. Use gold plated contacts when possible and be aware of the appropriate thickness of gold. There are a wide range of connector suppliers and it usually pays off to use those with a proven reputation. Be aware of the primary failure mechanisms and design to avoid them. Understand the environment that the connector will be placed in and make sure that sufficient reliability testing has been performed.

Initially Published in the SMTA Proceedings


Agreed on all points. There are however other interconnect design options that are outside the traditional approach to connector interface that could prove superior. My company came up with a HDMI D prototype connector using a unique approach that worked quite well first pass. (19 pin female about the size of a USB mini) Not being a connector company however, the interest has been limited. Perhaps when the problem becomes intractable using established methods.
Joseph Fjelstad, Verdant Electronics

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Cleaning Reballed BGA Components
We Bake, But Still Have Delamination, Why?
Reflow For Rigid Flex
Solder Paste Volume for BGA Rework
Problems With Starved "J" Lead Joints
Delay Before Cleaning Partial Assemblies
Can a CTE Mismatch Cause Reliability Problems?
Solder Paste Transfer Efficiency - What/Why
Ask the Experts
Soldering Components with Silver Pads
Environment Impact on Assembly, Printing and Reflow
Solder Balling Prediction Formula
Old Components and Blow Holes
Estimating Failure Rate During Rework
Coating to stop tin whisker growth?
Cleaning an assembled board with IPA
Remove and replace a 240 pin connector