Electronics Assembly Knowledge, Vision & Wisdom
Programs | Directory | Subscribe
Bending Strength of Solder Joints as a Function of Joint Length
Bending Strength of Solder Joints as a Function of Joint Length
The effect of joint length on the fracture of copper-solder-copper joints is investigated using double cantilever-beam specimens of various joint lengths.
Analysis Lab

Authored By:
Saeed Akbari, Amir Nourani, Jan K. Spelt
University of Toronto
Toronto, ON, Canada
,{url:'http://www.circuitinsight.com/videos/programs_final.mp4'}], clip:{autoBuffering:true, autoPlay:true, scaling:'scale' } }).ipad();
Summary
The effect of the joint length on the fracture of coppersolder-copper joints were investigated using doublecantilever-beam (DCB) specimens of various joint lengths. It was found that for solder joints shorter than a certain characteristic length the strength increased with increasing joint length. This characteristic length was found numerically using a finite element model to plot the maximum peel stress of the solder joint versus the joint length.

The length at which the plot reaches a plateau was considered as the characteristic length. Characteristic lengths obtained from experiment and finite element analysis were in close agreement, indicating the validity of the numerical method. The practical importance of the characteristic length is that solder joints longer than the characteristic length have a maximum peel stress that remains unchanged with joint length, causing the joint strength to become independent of the joint length. In other words, the use of joints longer than the characteristic length provides no additional strength to the joint.
Conclusions
The fracture strength of mode-I copper DCB specimens were measured with SAC305 solder joints of various lengths. Joint strength increased with increasing solder length before reaching a plateau value of constant strength. The corresponding finite element model showed that the maximum peel stress became independent of the length of the solder layer beyond a characteristic length which was very close to the solder length corresponding to the initiation of the measured joint-strength plateau.

This supported the hypothesis that solder joints reach a maximum strength at the characteristic solder length, and that further increases in length do not result in stronger joints. The concept of the characteristic length was illustrated in a hypothetical chip resistor assembly loaded by board bending. The characteristic length of a typical chip resistor solder joint was predicted to be about 1 mm, as determined from the finite element predictions of the maximum solder peel stress as a function of the joint length.
Initially Published in the SMTA Proceedings
Submit A Comment

Comments are reviewed prior to posting. Please avoid discussion of pricing or recommendations for specific products. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Company


E-mail


Country


Comments


Authentication

Please type the number displayed into the box. If you attempt to submit information and receive an error, you may need to refresh the page and insert the information again.



         
Related Programs
bullet Investigation into Lead-Free Low Silver Solder Wire for Electronics
bullet Frequency of Checking Solder Paste Viscosity
bullet Microstructure and Reliability of Low AG/Bi Solder Alloys
bullet Reactions of Sn in the Cu-Sn-Zn Alloy
bullet Impact of Low Silver Paste on Area Array Joint Quality
bullet Solder Paste Mixing After Cold Storage
bullet Developing a New Lead-Free Alloy
bullet Electrochemical Methods to Measure Corrosion Potential of Flux Residue
bullet The Role of Organic Amines in Soldering Materials
bullet Nanocopper Based Paste for Solid Copper Via Fill
More Related Programs