Electronics Assembly Knowledge, Vision & Wisdom
The Role of Organic Amines in Soldering Materials
The Role of Organic Amines in Soldering Materials
Paper shows that tests can be developed to characterize fundamental properties of activator packages that directly impact performance.
Materials Tech

Materials Tech programs cover topics including:
Adhesives, Chemicals, Cleaning Solutions, Coatings, Components, Design, Embedded Technology, Fasteners, Finishes, Flex Circuits, Flip Chip, Fluxes, PC Fab, Solders, Solder Masks, Solder Paste and more.
Submit A Comment
Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company


Your E-mail


Your Country


Your Comment



Authored By:
Yanrong Shi Ph.D., Xiang Wei Ph.D, Bruno Tolla Ph.D
Kester Inc. Itasca, IL, USA

Summary
The transition from eutectic tin-lead to lead-free soldering in electronic assembly, mandated by the RoHS legislation, has brought great pressure and challenge to solder material formulation due to the high soldering temperature and high alloy surface tension. Moreover, the demand for halogen-free materials, which should be transparent to process yields, along with the miniaturization trend in the electronic industry, is triggering a revolution in solder flux and paste formulations.

The chemical and material interactions related to soldering and assembly processes are many and varied. In general, the chemicals have to be stable during handling at mild temperatures to warrant a process-friendly shelf-life. While at preheat and soldering temperatures, the solder flux or the paste have to provide thermal transfer to the joint area and react with the metallization on the printed circuit board (PCB) and component leads to remove oxide and surface contamination in order to prepare the surface for good metallurgical bonding, prevent re-oxidation with the atmosphere until the solder alloy re-solidifies, and promote wetting to form the joint. Residues created by the flux contain metal salts, as well as organic and inorganic byproducts.

A traditional formulation mainly relies on organic-based materials, rosins and carboxylic acids to promote fluxing. Several attempts to understand the reactivity of organic acids and halogenated species have demonstrated the complexity of the chemical systems involved in fluxing mechanisms. Amine based formulations were mostly found in the old days, in the forms of ammonium or ammonium halides. Here, we report a preliminary study aiming at giving some insight into the role of amines in electronic assembly applications.

Our work shows that practical tests can be developed to characterize some fundamental properties of the activator packages which directly impact the final performance. The study of interactions between individual components within the system is another key aspect of the design work. From that perspective, we intend to demonstrate that the formulator can develop robust formula based on scientific principles and rational studies rather than empirical knowledge and trial-and-error approaches.

Conclusions
The selection of activator for solder material formulation needs to take multiple factors into consideration. The activator must be suitable for thermodynamically favorable and kinetically accessible reactions to remove metal oxides; hence, solderability is a combined outcome of the overall physical and chemical properties.

More importantly, the activators also need to be compatible with other ingredients in the formulation to provide adequate shelf-life at mild temperature and activated synergistically during reflow to perform the fluxing chemistry. Further studies are ongoing to gain a comprehensive understanding of the reliability aspects associated with this class of chemicals.

Initially Published in the IPC Proceedings

Comments
No comments have been submitted to date.
Free Newsletter Subscription
Every issue of the Circuit Insight email newsletter will bring you the latest information on the issues affecting you and your company.

Insert Your Email Address

Directory Search


Program Search
Related Programs
bullet Solder Paste Selection for Bottom Termination Components Attach
bullet Surface Insulation Resistance of No-Clean Flux Residues
bullet Solder Joint Reliability of 0.8 mm BGA Packages for Automotive
bullet Solder Paste: Fundamental Material Property / SMT Performance Correlation
bullet Factors Impacting the Reliability of Ultralow Silver Lead Free Alloys
bullet Rheology of Solder Paste: Shelf Life Study
bullet Improved Flux Reliability of Lead-Free Solder Alloy Solder Paste
bullet Implementation of Assembly Processes for Low-Melting Point Solder Pastes
bullet Relative Humidity Dependence of Creep Corrosion on Organic-Acid Flux
bullet How Does Printed Solder Paste Volume Affect Solder Joint Reliability?
More Related Programs